Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin

Abstract

A wide variety of mechanisms are used to generate a proton-motive potential across cell membranes, a function lying at the heart of bioenergetics. Bacteriorhodopsin, the simplest known proton pump1, provides a paradigm for understanding this process. Here we report, at 2.1 Å resolution, the structural changes in bacteriorhodopsin immediately preceding the primary proton transfer event in its photocycle. The early structural rearrangements2 propagate from the protein's core towards the extracellular surface, disrupting the network of hydrogen-bonded water molecules that stabilizes helix C in the ground state. Concomitantly, a bend of this helix enables the negatively charged3 primary proton acceptor, Asp 85, to approach closer to the positively charged primary proton donor, the Schiff base. The primary proton transfer event would then neutralize these two groups, cancelling their electrostatic attraction and facilitating a relaxation of helix C to a less strained geometry. Reprotonation of the Schiff base by Asp 85 would thereby be impeded, ensuring vectorial proton transport. Structural rearrangements also occur near the protein's surface, aiding proton release to the extracellular medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral characterization of a bacteriorhodopsin (bR) intermediate trapped within a single crystal.
Figure 2: Structural changes in bacteriorhodopsin resulting from photoexcitation at 170 K.
Figure 3: Detailed view of electron density changes overlaid on the ground state model and contoured to 3.4 σ.
Figure 4: Structural rearrangements facilitating the primary proton transfer event.
Figure 5: The r.m.s. deviation between the backbones of the refined LLT model (Table 1) and the ground state bacteriorhodopsin versus the residue number.

Similar content being viewed by others

References

  1. Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biol. 233, 149–152 ( 1971).

    Article  CAS  Google Scholar 

  2. Edman, K. et al. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Braiman, M. S. et al. Vibrational spectroscopy of bacteriorhodopsin mutants: Light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212. Biochemistry 27, 8516– 8520 (1988).

    Article  CAS  Google Scholar 

  4. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Schlichting, I., Berendzen, J., Phillips, G. N. & Sweet, R. M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371, 808–812 ( 1994).

    Article  ADS  CAS  Google Scholar 

  6. Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L. & Getzoff, E. D. Structure at 0. 85 Å resolution of an early protein photocycle intermediate. Nature 392, 206–209 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Maeda, A., Sasaki, J., Yamazaki, Y., Needleman, R. & Lanyi, J. K. Interaction of Aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: A Fourier-transform infrared spectroscopy study. Biochemistry, 33, 1713–1717 (1994).

    Article  CAS  Google Scholar 

  8. Hendrickson, F. M., Burkard, F. & Glaeser, R. M. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle. Biophys. J. 75 , 1446–1454 (1998).

    Article  CAS  Google Scholar 

  9. Hadfield, A. & Hajdu, J. A fast and portable microspectrophotometer for protein crystallography. J. Appl. Crystallogr. 26, 839–842 (1993).

    Article  CAS  Google Scholar 

  10. Belrhali, H. et al. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7, 909–917 (1999).

    Article  CAS  Google Scholar 

  11. Subramaniam, S., Gerstein, M., Oesterhelt, D. & Henderson, R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 12, 1–8 (1993).

    Article  CAS  Google Scholar 

  12. Subramaniam, S. et al. Protein conformational changes in the bacteriorhodopsin photocycle. J. Mol. Biol. 287, 145– 161 (1999).

    Article  CAS  Google Scholar 

  13. Takei, H., Gat, Y., Rothman, Z., Lewis, A. & Sheves, M. Active site Lysine backbone undergoes conformational changes in the bacteriorhodopsin photocycle. J. Biol. Chem. 269, 7387–7389 (1994).

    CAS  PubMed  Google Scholar 

  14. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J.-P. & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286, 255–260 (1999).

    Article  CAS  Google Scholar 

  15. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. -P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1. 55 Å resolution. J. Mol. Biol. 291, 899–911 (1999).

    Article  CAS  Google Scholar 

  16. Balashov, S. P., Imasheva, E. S., Govindjee, R. & Ebrey, T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys. J. 70, 473–481 (1996).

    Article  CAS  Google Scholar 

  17. Althaus, T. & Stockburger, M. Time and pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin and its correlation with proton release. Biochemistry 37, 2807 –2817 (1998).

    Article  CAS  Google Scholar 

  18. Gat, Y. & Sheves, M. A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds. J. Am. Chem. Soc. 115, 3772– 3773 (1993).

    Article  CAS  Google Scholar 

  19. Balashov, S. P. et al. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry 36 , 8671–8676 (1997).

    Article  CAS  Google Scholar 

  20. Hu, J. G., Sun, B. Q., Petkova, A. T., Griffin, R. G. & Herzfeld, J. The predischarge chromophore in bacteriorhodopsin: a 15N solid state NMR study of the L photointermediate. Biochemistry 36, 9316– 9322 (1997).

    Article  CAS  Google Scholar 

  21. Khorana, H. G. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Proc. Natl Acad. Sci. USA 90, 1166–1171 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Heberle, J., Oesterhelt, D. & Dencher, N. A. Decoupling of photo- and proton cycle in the Asp → Glu mutant of bacteriorhodopsin. EMBO J. 12, 3721–3727 (1993).

    Article  CAS  Google Scholar 

  23. Nollert, P. & Landau, E. M. Enzymic release of crystals from lipidic cubic phases. Biochem. Soc. Trans. 26, 709–713 (1998).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. W. & Bailey S.) 55–62 (DL/SCI/R34, Daresbury Laboratory, Warrington, 1993).

    Google Scholar 

  25. Bourgeois, D. New processing tools for weak and/or spatially overlapped macromolecular diffraction patterns. Acta Crystallogr. D 55, 1733– 1741 (1999).

    Article  CAS  Google Scholar 

  26. Collaborative computational project nr4. The CCP4 suite: Programs for protein crystallography. Acta. Crystallogr. D 50, 760–763 ( 1994).

  27. Chandra, N., Ravi Acharya, K. & Moody, P. C. E. Analysis and characterization of data from twinned crystals. Acta Crystallogr. D 55, 1750– 1758 (1999).

    Article  CAS  Google Scholar 

  28. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  29. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  30. Merrit, E. A. & Murphy, M. E. P. Raster3D version 2. 0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Belrhali, D. Bourgeois, J. Hajdu, A. Hardmeyer, J. Navarro, P. Nollert, H. Pettersson and S. Ramaswamy for experimental contributions and discussions, and G. Büldt for providing purple membrane. Support from the EU-BIOTECH, the Swedish Natural Science Research Council (NFR) and the Swiss National Science Foundation's SPP BIOTECH is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud M. Landau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royant, A., Edman, K., Ursby, T. et al. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648 (2000). https://doi.org/10.1038/35020599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020599

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing