Physical sciences articles within Nature Communications

Featured

  • Article
    | Open Access

    The electronic correlation-driven Mott metal-insulator transition has been predicted in a 2D metal-organic framework with a kagome structure. Here the authors synthesize such a system in experiment and demonstrate an electrostatically controlled Mott transition.

    • Benjamin Lowe
    • , Bernard Field
    •  & Agustin Schiffrin
  • Article
    | Open Access

    Manipulating the electronic properties of topological semimetals is a central goal of modern condensed matter physics research. Here, the authors demonstrate how a high-entropy engineering approach allows for the tuning of the crystal structure and the electronic states in a Dirac semimetal.

    • Antu Laha
    • , Suguru Yoshida
    •  & Zhiqiang Mao
  • Article
    | Open Access

    Point defects in 2D semiconductors have potential for quantum computing applications, but their controlled design and synthesis remains challenging. Here, the authors identify and fabricate a promising quantum defect in 2D WS2 via high-throughput computational screening and scanning tunnelling microscopy.

    • John C. Thomas
    • , Wei Chen
    •  & Geoffroy Hautier
  • Article
    | Open Access

    Phase singularities are intimately related to orbital angular momentum. Direct local imaging of orbital angular momentum effects at the nanoscale remains challenging. Here, the authors demonstrate via scanning tunnelling microscopy that inter-orbital angular momentum scatterings induced by asymmetric potentials can modulate the phase singularities and induce single-wavefront dislocations.

    • Yi-Wen Liu
    • , Yu-Chen Zhuang
    •  & Lin He
  • Article
    | Open Access

    Glutamine synthetase (GS) relies on Adenosine triphosphate (ATP) to activate glutamate (Glu) and are vital for maintaining ammonia and Glu homeostasis, but GS function is impaired during ATP-deficient neurotoxic events. Here the authors report polyphosphate-manganese nanosheets having GS-like activity independent of ATP to promote the conversion of Glu to glutamine in excitatory neurotoxic cells.

    • Jing Wang
    • , Xinyang Zhao
    •  & Wei Wei
  • Article
    | Open Access

    The quantitative connection between the molecular topology and molecular dynamics is a long-standing, fundamental challenge in polymer science. Here the authors present a model-driven predictive scheme for the uniaxial extensional viscosity and strain hardening of branched polymer melts, specifically for the pom-pom architecture.

    • Max G. Schußmann
    • , Manfred Wilhelm
    •  & Valerian Hirschberg
  • Article
    | Open Access

    Bergenin is a rare C-glycoside of 4-O-methyl gallic acid with multiple pharmacological properties. Here, the authors report the elucidation of the biosynthetic pathway of bergenin in Ardisia japonica and its bioproduction by engineered E. coli.

    • Ruiqi Yan
    • , Binghan Xie
    •  & Lin Yang
  • Perspective
    | Open Access

    Considerable attention has been directed towards chiral nanocatalysts due to their significant role in facilitating asymmetric organic transformations. Here the authors highlight the recent advancements and notable examples in the field of chiral inorganic nanocatalysts.

    • Si Li
    • , Xinxin Xu
    •  & Chuanlai Xu
  • Review Article
    | Open Access

    Untethered soft robots offer numerous advantages in terms of mobility, versatility, and autonomy, making them increasingly valuable for a wide range of applications. Jung et al. review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators.

    • Yeongju Jung
    • , Kangkyu Kwon
    •  & Seung Hwan Ko
  • Article
    | Open Access

    The control of reaction quantum efficiencies is a fundamental photochemical problem. Here the authors use comparative quantum-classical dynamics to reveal that the synchronization of specific vibrations with the reaction coordinate is a key promoting factor.

    • Alejandro Blanco-Gonzalez
    • , Madushanka Manathunga
    •  & Massimo Olivucci
  • Article
    | Open Access

    The conversion of atmospheric N2 into NH3 under ambient pressure is highly interesting but very challenging. In this study, the authors present a tandem air-NOx and NOx-NH3 system that combines non-thermal plasma-enabled N2 oxidation with Ni(OH)x/Cu-catalyzed electrochemical NOxreduction, resulting in a high NH3 yield from N2 under ambient pressure conditions.

    • Wei Liu
    • , Mengyang Xia
    •  & Guidong Yang
  • Article
    | Open Access

    Soft elastic materials could be useful in the fabrication of brain-machine interfaces, but achieving the desirable material properties can be challenging. Here, the authors report control of the amorphous-crystalline transition of polymers to alter hydrogel properties and monitor mouse behaviour.

    • Sizhe Huang
    • , Xinyue Liu
    •  & Siyuan Rao
  • Article
    | Open Access

    Conventional lighting requires an AC-DC converter for LEDs. Here, the authors report a tandem structure by connecting two QLEDs with opposite polarity in parallel, enabling AC driven operation. A household AC electricity plug-and-play QLEDs panel with tuneable colour and brightness is achieved.

    • Jiming Wang
    • , Cuixia Yuan
    •  & Shuming Chen
  • Article
    | Open Access

    Many of the most industrially important magnets require the addition of rare-earths to improve their coercivity and magnetic performance. Here, the authors place a single paramagnetic rare-earth ion, Er3+, in a diamagnetic nanoparticle, and study the slow relaxation of the resulting nanoparticles, providing vital information for the further development of rare-earth magnetic materials.

    • Diogo A. Gálico
    • , Emille M. Rodrigues
    •  & Muralee Murugesu
  • Article
    | Open Access

    Quantum annealing is usually discussed as a means of finding an optimal solution for a problem where there are many local minima, such as the travelling salesman. Here, Zhao et al present an intriguing example of quantum annealing in the case of the frustrated magnet α-CoV2O6, where a transverse magnetic field triggers the quantum annealing process.

    • Yuqian Zhao
    • , Zhaohua Ma
    •  & Yuesheng Li
  • Article
    | Open Access

    Hard carbon is regarded as a promising negative electrode for Na-ion batteries but suffers from low initial Coulombic efficiency (ICE). Here, the authors identify the time-dependent ion pre-desolvation on the nanopore of hard carbons, which remarkably improves the ICE by simply extending the aging time.

    • Ziyang Lu
    • , Huijun Yang
    •  & Haoshen Zhou
  • Article
    | Open Access

    Recently, excitons with unconventional properties were reported in a van der Waals antiferromagnet NiPS3. Here, using resonant inelastic x-ray scattering, the authors show that the formation of these excitons is primarily driven by Hund’s coupling and that they propagate similarly to two-magnon excitations.

    • W. He
    • , Y. Shen
    •  & M. P. M. Dean
  • Article
    | Open Access

    Porous carbons with high specific surface area and electronic conductivity are of interest for their electron and ion transport ability. Here authors use ultra-high temperature reactions of Li metal and polytetrafluoroethylene to make graphitized porous carbon for electrochemical energy storage.

    • Huimin Zhang
    • , Jingyi Qiu
    •  & Hao Zhang
  • Article
    | Open Access

    A highly efficient stereoselective C−H alkylation of indoles with aryl alkenes is achieved by sustainable iron catalysis, leading to atropoenriched and enantioenriched substituted indoles with high structural diversity. Detailed mechanistic studies by experiment, Mössbauer spectroscopy and computation reveal the origin of the catalytic efficacy and stereoselectivity.

    • Zi-Jing Zhang
    • , Nicolas Jacob
    •  & Lutz Ackermann
  • Article
    | Open Access

    The thermal Hall effect is a novel probe of neutral excitations in insulators; however, the mechanism behind one type of neutral excitations – phonons – is still unclear. Here the authors observe a planar thermal Hall effect in the Kitaev candidate material Na2Co2TeO6 and proposed that it is generated by phonons.

    • Lu Chen
    • , Étienne Lefrançois
    •  & Louis Taillefer
  • Article
    | Open Access

    Normal mode analysis is a crucial step in structural biology, but is based on an expensive diagonalisation of the system’s Hessian. Here the authors present INCHING, a GPU-based approach to accelerate this task up to >250 times over current methods for macromolecular assemblies.

    • Jordy Homing Lam
    • , Aiichiro Nakano
    •  & Vsevolod Katritch
  • Article
    | Open Access

    Thin crystals grown on rigid spherical templates of increasing curvature exhibit increased protrusions. Here, the authors demonstrate the opposite curvature effect on the morphology of molecularly thin crystals grown within elastic fluid membranes, like those of biological cells.

    • Hao Wan
    • , Geunwoong Jeon
    •  & Maria M. Santore
  • Article
    | Open Access

    Here, authors demonstrate the electrohydrodynamic printing of alkylated 3,4-dihydroxy-L-phenylalanine functionalized MXene (AD-MXene) ink. The AD-MXene outperforms vacuum-deposited Au and Al electrodes, providing thin film transistors with good environmental stability due to its hydrophobicity.

    • Tae Yun Ko
    • , Heqing Ye
    •  & Insik In
  • Article
    | Open Access

    The authors experimentally study a chain of superconducting islands (SI) and quantum dots (QD), where a Bogoliubov quasiparticle occupies each SI. They demonstrate correlations between the quasiparticles in each SI mediated by a single spin on the QD, known as an “over-screened" doublet state of the QD.

    • Juan Carlos Estrada Saldaña
    • , Alexandros Vekris
    •  & Jesper Nygård
  • Article
    | Open Access

    Poly-β-(1–6)-N-acetylglucosamine (PNAG) is an important vaccine target, but the impact of the number and position of free amine vs N-acetylation on its antigenicity is not well understood. Here, the authors report a divergent strategy to synthesize a comprehensive library of PNAG pentasaccharides, enabling the identification of enhanced epitopes for vaccines against Staphylococcus aureus including drug resistant strains.

    • Zibin Tan
    • , Weizhun Yang
    •  & Xuefei Huang
  • Article
    | Open Access

    Large-scale eDMFT computation reveals that FeO undergoes a gradual orbitally selective insulator-metal transition across the extreme conditions of Earth’s interior, with implications for compositions and conductivity of the core-mantle boundary region.

    • Wai-Ga D. Ho
    • , Peng Zhang
    •  & Vasilije V. Dobrosavljevic
  • Article
    | Open Access

    The communication of colour information stands as one of the most immediate and widespread methods of interaction among biological entities. Xu et al. report an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for real-time visualised in-sensor computing.

    • Yao Ni
    • , Jiaqi Liu
    •  & Wentao Xu
  • Article
    | Open Access

    Schools, flocks and related forms of collective behavior and collective locomotion involve complicated fluid dynamical interactions. Here, using a “mock flock" of robotic flappers, authors report that the interaction between leaders and followers is similar to one-way springs, leading to lattice-like self-organization but also a new type of traveling-wave disturbance.

    • Joel W. Newbolt
    • , Nickolas Lewis
    •  & Leif Ristroph
  • Article
    | Open Access

    F-actin architecture modulates transmission and generation of stresses in cells, yet its impact on myosin ATP hydrolysis remains unknown. The authors perform experiments measuring myosin ATP hydrolysis rates, showing that F-actin architecture can control myosin energy consumption.

    • Ryota Sakamoto
    •  & Michael P. Murrell
  • Article
    | Open Access

    Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures, including quantum computing. Here, the authors show that dynamically optimizing the acoustic parameters of the refrigerator can improve conventional cooldown speeds up to 3.5 times.

    • Ryan Snodgrass
    • , Vincent Kotsubo
    •  & Joel Ullom
  • Article
    | Open Access

    Notwithstanding their success as strongly σ-donating and π-accepting ligands, to date no chelating bis[cyclic (alkyl)(amino)carbenes] have been reported. Here the authors describe a chelating, C2-symmetric bis[cyclic (alkyl)(amino)carbene] ligand, as well as its pseudotetrahedral complexes with iron, cobalt, nickel, and zinc dihalides.

    • Braulio M. Puerta Lombardi
    • , Morgan R. Faas
    •  & Roland Roesler
  • Article
    | Open Access

    Crystalline materials’ properties are highly dependent on their size. Here authors report a general synthesis of ultrasmall (4–6 nm) and highly defective Zr/Hf-Metal Organic Frameworks nanoparticles that present enhanced peptide hydrolysis performance.

    • Shan Dai
    • , Charlotte Simms
    •  & Christian Serre
  • Article
    | Open Access

    While monolayer of 1T-TaS2 is considered to be a Mott insulator, the nature of the bulk insulating state is debated. Here the authors introduce a ladder-type structures with fractional misalignment of adjacent layers, showing that it becomes a Mott insulator due to decoupling between the layers.

    • Yihao Wang
    • , Zhihao Li
    •  & Liang Cao
  • Article
    | Open Access

    The authors characterize the phonon modes at the FeSe/SrTiO3 interface with atomically resolved electron energy loss spectroscopy and correlate them with accurate atomic structure in an electron microscope. They find several phonon modes highly localized at the interface, one of which engages in strong interactions with the electrons in FeSe.

    • Ruochen Shi
    • , Qize Li
    •  & Peng Gao