Physical chemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    Ethylene hydrogenation often serves as an example of a structure insensitive reaction. Here, the authors study the reaction, catalyzed by a range of size-selected platinum nanocatalysts, and demonstrate that in the sub-nanometer regime particle size can be used to tune hydrogenation activity and selectivity.

    • Andrew S. Crampton
    • , Marian D. Rötzer
    •  & Uzi Landman
  • Article
    | Open Access

    The excitation of metal nanoparticles with light can lead to localized surface plasmon resonances, capable of driving chemical reactions in bound species. Here, the authors elucidate this mechanism and suggest that future plasmonic catalysts may be able to selectively activate specific chemical bonds.

    • Calvin Boerigter
    • , Robert Campana
    •  & Suljo Linic
  • Article
    | Open Access

    Slow switching speeds in device configurations have severely limited the applications of electrochromic materials. Here, Xu et al. use plasmonic nanoslit arrays and demonstrate fast, high-contrast, monochromatic and full-colour electrochromic switching using two different electrochromic polymers.

    • Ting Xu
    • , Erich C. Walter
    •  & A. Alec Talin
  • Article
    | Open Access

    Electropolymerization of aromatic monomers on bipolar electrodes is emerging as promising route to the surface modification of conductive objects. Here, the authors discover that some conducting polymers propagate as fibres, opening up the possibility of growing conductive polymer networks via a wireless process.

    • Yuki Koizumi
    • , Naoki Shida
    •  & Shinsuke Inagi
  • Article
    | Open Access

    In single-molecule spectroscopy typically only emission spectra are recorded. Here, the authors develop a technique to record single-molecule excitation spectra under ambient conditions, which is robust against blinking and bleaching, and reveals a large distribution of spectra across the molecule ensemble.

    • Lukasz Piatkowski
    • , Esther Gellings
    •  & Niek F. van Hulst
  • Article
    | Open Access

    Biological systems typically operate at conditions far from chemical equilibrium. Here, the authors model and develop a microfluidic reactor allowing control over time-variable supply and dissipation of chemicals by droplet fusion and fission, allowing non-equilibrium chemical reactions to be regulated.

    • Haruka Sugiura
    • , Manami Ito
    •  & Masahiro Takinoue
  • Article
    | Open Access

    The efficiency of photocatalysis on semiconductor-metal hybrid nanostructures can be influenced by myriad factors. Here, through both experimental and theoretical efforts, the authors elucidate the influence of metal domain size upon performance of such structures, allowing future rational design.

    • Yuval Ben-Shahar
    • , Francesco Scotognella
    •  & Uri Banin
  • Article
    | Open Access

    The hierarchy of bond stiffness may contribute to the thermal properties of metal clusters. Here, the authors use X-ray absorption spectroscopy to study the stiffness of the gold–gold and gold–sulfur bonds in a series of thiolate-protected, icosahedral-based gold clusters.

    • Seiji Yamazoe
    • , Shinjiro Takano
    •  & Tatsuya Tsukuda
  • Article
    | Open Access

    New sodium-ion battery technology requires better control over solid electrolyte interface formation. Here, the authors report a series of ball-milled sodium alloys and enriched insertion electrodes, which act as sodium reservoirs compensating for sodium loss during solid electrolyte interface formation.

    • Biao Zhang
    • , Romain Dugas
    •  & Jean-Marie Tarascon
  • Article
    | Open Access

    Synthetic organic fluorophores are powerful tools for bioimaging, but frequently display shortened observation times and signal fluctuations. Here, the authors report a general method to covalently label a biomolecule with a fluorophore and photostabilizer, reducing unwanted photophysical effects by intramolecular quenching of reactive fluorophore states.

    • Jasper H. M. van der Velde
    • , Jens Oelerich
    •  & Thorben Cordes
  • Article
    | Open Access

    Atomic-level control over size, shape and surface composition of nanoparticles is vital for developing materials with integrated multiple functionalities. Here, the authors probe the different roles of oleate ions and oleic acid molecules and their effects on growth mechanisms for sub-50 nm nanoparticles.

    • Deming Liu
    • , Xiaoxue Xu
    •  & Dayong Jin
  • Article
    | Open Access

    There is intensive research underway into the development of various mechanical energy harvesters. Here, the authors report an electrochemically driven mechanical energy harvester that uses the stress-induced potential difference of lithiated silicon electrodes to generate continuous electricity.

    • Sangtae Kim
    • , Soon Ju Choi
    •  & Ju Li
  • Article
    | Open Access

    The occlusion of biomacromolecules can endow biominerals with enhanced mechanical properties. Here, the authors usein situatomic force microscopy and micromechanical simulations to trace micelle incorporation in calcite to shed light on the mechanism of occlusion and cavity formation.

    • Kang Rae Cho
    • , Yi-Yeoun Kim
    •  & James J. De Yoreo
  • Article
    | Open Access

    Transition state theory has proven to be a powerful tool for the analysis of a number of processes, perhaps most commonly chemical reactions. Here, the authors use transition state theory to model a directly observable, micron scale process—the transport of DNA molecules in a confined environment.

    • Christian L. Vestergaard
    • , Morten Bo Mikkelsen
    •  & Henrik Flyvbjerg
  • Article
    | Open Access

    How the local structure of water varies as a function of temperature is a long-studied topic, which is still under debate. Here, the authors show that dielectric susceptibility measurements might be used to probe and identify propagating optical phonon-like modes in the hydrogen-bond network of water.

    • Daniel C. Elton
    •  & Marivi Fernández-Serra
  • Article
    | Open Access

    Atomic scale simulation of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. Here, the authors look at cap nucleation of nanotubes from hydrocarbon precursors, specifically probing the role of hydrogen in the early stages of growth.

    • Umedjon Khalilov
    • , Annemie Bogaerts
    •  & Erik C. Neyts
  • Article
    | Open Access

    Phase transformations in nanoparticles can have a large effect on the performance of electrochemical devices and are strongly determined by parameters such as surface energy and faceting. Here, the authors study the hydriding phase transformation in individual palladium nanocubes and uncover individual structure-function relationships.

    • A. Ulvestad
    • , M. J. Welland
    •  & O. G. Shpyrko
  • Article
    | Open Access

    Most electrostatic actuators suffer from an operational instability, the so-called pull-in effect. Here, the authors report an electrostatic actuator concept which makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections.

    • Holger Conrad
    • , Harald Schenk
    •  & Miriam Lenz
  • Article
    | Open Access

    DNA could find a role in molecular electronics. Here, the authors show that the conductance of DNA can be reversibly changed by an order of magnitude when its conformation is changed from one form to another by controlling its chemical environment.

    • Juan Manuel Artés
    • , Yuanhui Li
    •  & Joshua Hihath
  • Review Article
    | Open Access

    Water is the most common liquid in nature, with unusual properties that could be linked to the peculiar hydrogen-bonding network holding the molecules together. Here, Nilsson and Pettersson review recent progress in searching the connections between local configurations and thermodynamic responses of water.

    • Anders Nilsson
    •  & Lars G. M. Pettersson
  • Article
    | Open Access

    Self-propelled colloidal particles can be potentially used to transport cargoes at the microscale, but it is challenging to prevent randomization of their motion by Brownian rotations. Here, Das et al.quench these rotations by solid walls, which guide in-plane swimming without the need for external fields.

    • Sambeeta Das
    • , Astha Garg
    •  & Stephen J. Ebbens
  • Article
    | Open Access

    Maximising short-circuit current density and open circuit voltage in polymer-fullerene solar cells is a critical issue. Here, the authors use an aphthobisoxadiazole-based polymer and observe a low photon energy loss of 0.5 eV, with an open-circuit voltage of 1 V and power conversion efficiency of 9%.

    • Kazuaki Kawashima
    • , Yasunari Tamai
    •  & Kazuo Takimiya
  • Article
    | Open Access

    Block copolymers can form micelles and assemblies of micelles (supermicelles) when placed in suitable solvents. Here, the authors use optical tweezers to control the arrangement and deposition of supermicelles into higher-order patterned nanostructures.

    • Oliver E.C. Gould
    • , Huibin Qiu
    •  & Ian Manners
  • Article
    | Open Access

    Phosphorescent materials made of purely organic components are typically less efficient than their organometallic counterparts. Here, the authors report a strategy to improve the phosphorescence efficiency of metal-free materials by reducing radiationless transitions by covalently linking into a polymer matrix.

    • Min Sang Kwon
    • , Youngchang Yu
    •  & Jinsang Kim
  • Article
    | Open Access

    Tyrosine-tryptophan dyads are known to mediate electron transfer reactions in a range of different proteins. Here, the authors study a beta hairpin peptide, probing the tyrosine-tryptophan interaction and showing no hydrogen bonding but rather charge transfer between the tyrosyl radical and tryptophan'.

    • Cynthia V. Pagba
    • , Tyler G. McCaslin
    •  & Bridgette A. Barry
  • Article
    | Open Access

    An imbalance in I/Pb stoichiometry is thought to lead to defects in metal halide films. Here, Zhang et al. show that the addition of hypophosphorous acid in the precursor solution can significantly improve the film quality and enhance the photoluminescence intensity, leading to improved photovoltaic devices.

    • Wei Zhang
    • , Sandeep Pathak
    •  & Henry J. Snaith
  • Article
    | Open Access

    Many aspects of energy flow in nanostructures are not well understood due to difficulties associated with resolution. Here, Laraoui et al. use a diamond-nanocrystal-hosted nitrogen vacancy centre as a nanoscale probe with atomic force microscopy to image thermal conductivity.

    • Abdelghani Laraoui
    • , Halley Aycock-Rizzo
    •  & Carlos A. Meriles
  • Article
    | Open Access

    Solution-state patterning of functional materials on surfaces is important for a number of emerging technologies. Here, the authors demonstrate a bottom-up method of endowing freestanding surfaces with mesoporous conducting polymer coatings for enhanced electrochemical capacitance properties.

    • Shaohua Liu
    • , Pavlo Gordiichuk
    •  & Xinliang Feng
  • Article
    | Open Access

    Photoluminescent objects absorb light and then relax by emitting photons, usually with a lower energy. Here, the authors show that carbon nanotubes also emit larger energy photons thanks to one-phonon-assisted up-conversion, suggesting that nanotubes could be used as near-infrared up-converters.

    • Naoto Akizuki
    • , Shun Aota
    •  & Yuhei Miyauchi
  • Article
    | Open Access

    It is commonly believed that graphene flakes form electrical percolation networks at low concentration, and thus can be used as conductive materials. Here, Yuan et al. show in graphene polymer composites that the transition to liquid crystals hinders the formation of percolated networks, resulting in high-kmaterials.

    • Jinkai Yuan
    • , Alan Luna
    •  & Philippe Poulin
  • Article
    | Open Access

    Systematic variation of surface sites may allow for more efficient testing of surface chemical reactions. Here, the authors use a platinum curved crystal and, by carrying out photoemission scans, are able to systematically address the fundamental CO-chemisorption process on a ‘tunable’ vicinal surface.

    • Andrew L. Walter
    • , Frederik Schiller
    •  & J. Enrique Ortega
  • Article
    | Open Access

    Naturally occurring single crystals can exhibit various intricate porous morphologies. Here, the authors are able to grow nanoporous single crystals of gold following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films.

    • Maria Koifman Khristosov
    • , Leonid Bloch
    •  & Boaz Pokroy
  • Article
    | Open Access

    Photoinduced carrier-generation in individual semiconducting single-walled carbon nanotubes is controversial. Here, the authors demonstrate that free carriers can be generated even in the absence of dissociating interfaces by performing time-resolved microwave conductivity on solutions of dispersed nanotubes.

    • Jaehong Park
    • , Obadiah G. Reid
    •  & Garry Rumbles
  • Article
    | Open Access

    Single walled nanotubes are promising materials for both fundamental research and advanced applications. Here, the authors develop the synthesis of four types of inorganic single walled nanotube, and show that their formation is initiated by the self-coiling of their ultrathin building blocks.

    • Bing Ni
    • , Huiling Liu
    •  & Xun Wang
  • Article
    | Open Access

    Advancing electron tomography to atomic resolution is a powerful and challenging process. Here, the authors demonstrate atomic resolution electron tomography on silver-gold core-shell nanoclusters grown in superfluid helium nanodroplets, revealing their three-dimensional morphology and composition.

    • Georg Haberfehlner
    • , Philipp Thaler
    •  & Gerald Kothleitner
  • Article
    | Open Access

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Here, the authors elucidate the precise time-regulated secretion of mussel adhesive proteins in Perna viridis, probing their surface structures and subsequent roles.

    • Luigi Petrone
    • , Akshita Kumar
    •  & Ali Miserez
  • Article
    | Open Access

    Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.

    • Tae Woo Kim
    • , Yuan Ping
    •  & Kyoung-Shin Choi
  • Article
    | Open Access

    Superior mechanical properties in natural composites are frequently achieved by the inclusion of locally orientated reinforcing particles. Here, the authors implement this design strategy synthetically by employing a 3D magnetic printing protocol to create programmable composite architectures.

    • Joshua J. Martin
    • , Brad E. Fiore
    •  & Randall M. Erb
  • Article
    | Open Access

    Molecular self-assemblies have potential as photon processing materials, yet observation of exciton delocalization dynamics can be challenging. Here, the authors experimentally demonstrate Frenkel exciton dynamics of H-type aggregates, studying delocalisation of excitons directly after photoexcitation.

    • Jooyoung Sung
    • , Pyosang Kim
    •  & Dongho Kim
  • Article
    | Open Access

    Endowing composite materials with spatially discrete mechanical behaviours is possible by varying the internal concentration and arrangement of particles. Here, the authors demonstrate a 3D magnetic printing technique which enables the fabrication of materials with intricate internal designs.

    • Dimitri Kokkinis
    • , Manuel Schaffner
    •  & André R. Studart
  • Article
    | Open Access

    There is economic impetus to achieve low-temperature carbon monoxide oxidation. Here, the authors use time-resolved diffuse reflectance infrared spectroscopy and mass spectrometry to show that platinum carbonates formed reversibly from platinum/aluminium oxide can oxidize carbon monoxide at room temperature.

    • Mark A. Newton
    • , Davide Ferri
    •  & Maarten Nachtegaal
  • Article
    | Open Access

    Bubble generation during boiling is essential to power generation and heating/cooling systems, but it remains uncontrollable even with state-of-the-art surface engineering. Cho et al. electrostatically attract surfactants to the surface, on which bubble nucleation is manipulated in an on-demand manner.

    • H. Jeremy Cho
    • , Jordan P. Mizerak
    •  & Evelyn N. Wang
  • Article
    | Open Access

    Iron and nitrogen doped carbon materials are widely studied electrocatalysts, however measurement of features such as intrinsic turn-over frequency and active site utilization has proved difficult. Here, the authors use a combination of chemisorption and spectroscopy techniques to determine these properties.

    • Nastaran Ranjbar Sahraie
    • , Ulrike I. Kramm
    •  & Peter Strasser
  • Article
    | Open Access

    The phenomenon of crystallization is common in nature, but surprisingly the nucleation pathways from liquid to solid are poorly understood due to the lack of effective experimental probes. Yoo et al. observe the existence of a nucleation precursor in titanium dioxide using single-pulse electron microscopy.

    • Byung-Kuk Yoo
    • , Oh-Hoon Kwon
    •  & Ahmed H. Zewail
  • Article
    | Open Access

    The two-dimensional material black phosphorus could find uses in energy applications. Here, the authors study the difference in in-plane thermal conductivity along the armchair and zigzag directions in suspended few-layer black phosphorus, and show the dependence of this anisotropy on sample thickness.

    • Zhe Luo
    • , Jesse Maassen
    •  & Xianfan Xu