Physical chemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    Time-resolved NMR spectra provide unique structural and dynamical information, but their measurement in systems undergoing chemical reactions is challenging. Here the authors, combining single-scan spectroscopic imaging, rapid mixing and continuous flow techniques, obtain chemically resolved snapshots of a reacting system throughout the reaction coordinate.

    • Michael J. Jaroszewicz
    • , Mengxiao Liu
    •  & Lucio Frydman
  • Article
    | Open Access

    Associative electronic detachment (AED) reactions of anions play a key role in many natural processes. Here, Hassan and colleagues investigate AED reactions between hydroxyl anions and ultracold rubidium atoms in a hybrid atom-ion trap, revealing different dynamics for collisions with ground and electronically excited state rubidium.

    • Saba Zia Hassan
    • , Jonas Tauch
    •  & Matthias Weidemüller
  • Article
    | Open Access

    By advanced machine learning techniques, first-principles simulations find that dissolving salt in water does not change water structure drastically. It is contrary to the notion of “pressure effect” which has been widely applied over past 25 years.

    • Chunyi Zhang
    • , Shuwen Yue
    •  & Xifan Wu
  • Article
    | Open Access

    All-organic perovskites exhibit structural tunability and solution-processability, but are disadvantaged by a lower coercive field compared to inorganic ones. Here, the authors demonstrate that modulating hydrogen bond strength in such perovskites can generate a large coercive field.

    • Hwa Seob Choi
    • , Shunning Li
    •  & Kian Ping Loh
  • Article
    | Open Access

    Oxygen production using electrolysis will be critical for life support and refueling on the Moon and Mars. Herein, electrolysis under lunar and Martian gravity was found to be less efficient than electrolysis under Earth’s gravity, and predictable from data obtained using ground-based systems.

    • Bethany A. Lomax
    • , Gunter H. Just
    •  & Mark D. Symes
  • Article
    | Open Access

    The internal Stark effect, a shift of the spectral lines of a chromophore induced by electrostatic fields in its close environment, plays an important role in nature. Here the authors observe a Stark shift in the fluorescence spectrum of a phthalocyanine molecule upon charge modifications within the molecule itself, achieved by sequential removal of the central protons with a STM tip.

    • Kirill Vasilev
    • , Benjamin Doppagne
    •  & Guillaume Schull
  • Article
    | Open Access

    Surface states, and the combination of suitable materials, induce spatial gradients in the carrier density of doped metal oxide nanocrystals, affecting their electronic structure and plasmonic behavior. Here the authors demonstrate depletion layer engineering and control in ITO/In2O3 core–shell nanocrystals by tuning the shell thickness or by photodoping.

    • Michele Ghini
    • , Nicola Curreli
    •  & Ilka Kriegel
  • Article
    | Open Access

    Tracking the flow of charge in reacting molecules may provide key insight into reaction mechanisms, but is particularly challenging in liquid solutions. Here the authors, by analyzing the isotropic and anisotropic scattering signal in femtosecond time resolved X-ray liquidography, determine the charge localization and structural changes during photodissociation of the triiodide anion I3-

    • Jun Heo
    • , Jong Goo Kim
    •  & Hyotcherl Ihee
  • Article
    | Open Access

    The electronic structures of photoactive proteins underlie many natural photoinduced processes. The authors, using UV liquid-microjet photoelectron spectroscopy and quantum chemistry calculations, determine electron detachment energies of the green fluorescent protein chromophore in aqueous solution, approaching conditions of the protein environment.

    • Omri Tau
    • , Alice Henley
    •  & Helen H. Fielding
  • Article
    | Open Access

    Chiroptical properties of amino acids are challenging to investigate in the gas phase due to the low vapor pressure of these molecules. Here the authors succeed in measuring circular dichroism active transitions and anisotropies in the ultraviolet range for several gas-phase amino acids, shedding light on the interactions between molecules and circularly polarized light that lead to chiral symmetry breaking.

    • Cornelia Meinert
    • , Adrien D. Garcia
    •  & Uwe J. Meierhenrich
  • Article
    | Open Access

    One approach to altering the properties of π-conjugated oligomers is conformational engineering, in which the degree of rotation around the bonds linking monomers is restricted. Here the authors apply the conformational engineering approach on individual monomers using tethers of varying lengths to twist the aromatic units, and study the effects of varying the angles.

    • Anjan Bedi
    • , Amit Manor Armon
    •  & Ori Gidron
  • Article
    | Open Access

    The Strecker synthesis is considered a viable route to amino acids formation on the primordial Earth. Here the authors succeed in observing its elusive intermediate aminomethanol, formed by insertion of an electronically excited oxygen atom in methylamine and stabilized by an icy matrix, using isomer-selective photoionization time-of-flight mass spectrometry during thermal desorption of the ice mixture.

    • Santosh K. Singh
    • , Cheng Zhu
    •  & Ralf I. Kaiser
  • Article
    | Open Access

    Time-resolved circular dichroism spectra can reveal changes in chirality on ultrashort time scales, but achieving sub-picosecond time resolution is still a challenge. Here the authors demonstrate 100-femtosecond time-resolved CD mapping of polyfluorene copolymer thin films, revealing a supramolecular origin of their chiroptical response.

    • Marius Morgenroth
    • , Mirko Scholz
    •  & Thomas Lenzer
  • Article
    | Open Access

    Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy.

    • D. Mayer
    • , F. Lever
    •  & M. Gühr
  • Article
    | Open Access

    Tailoring the macroscopic properties of deep eutectic solvents requires knowing how these depend on the local structure and microscopic dynamics. The authors, with computational and experimental tools spanning a wide range of space- and timescales, shed light into the relationship between micro and macroscopic properties in glyceline and ethaline.

    • Stephanie Spittle
    • , Derrick Poe
    •  & Joshua Sangoro
  • Article
    | Open Access

    The photophysical mechanism by which nucleosides dissipate energy after UV light irradiation is still under debate. Here the authors, using ultrafast time resolved optical spectroscopies and quantum chemical computations, resolve the early steps of such mechanism in uridine and 5-methyluridine in aqueous solution.

    • Rocío Borrego-Varillas
    • , Artur Nenov
    •  & Giulio Cerullo
  • Article
    | Open Access

    Nonphotochemical quenching (NPQ) protects photosynthetic complexes from damage due to excess light. Here the authors explore different conformations of the plant CP29 light harvesting complex, showing how protein tuning of carotenoid excitation energies and carotenoid-chlorophyll interactions account for NPQ.

    • Edoardo Cignoni
    • , Margherita Lapillo
    •  & Benedetta Mennucci
  • Article
    | Open Access

    The ponderomotive effect experienced by electrons in a molecule under a transient electric field impacts the reactivity, but has been difficult to detect. The authors observe a ponderomotive force on the excess quasi-free electron in the non-valence bound state of three molecular anions, by measuring the photodetachment spectrum under irradiation with a non-resonant wavelength.

    • Do Hyung Kang
    • , Jinwoo Kim
    •  & Sang Kyu Kim
  • Article
    | Open Access

    Ice nucleation in confined geometries is a ubiquitous phenomenon, but difficult to characterize. Here the authors investigate experimentally the freezing of water nanodroplets surrounded by octane in nanopores down to 2 nm, and demonstrate that the soft curved oil-water interface suppresses heterogeneous ice nucleation, which occurs at a lower temperature than homogenous bulk nucleation.

    • Alireza Hakimian
    • , Mohammadjavad Mohebinia
    •  & Hadi Ghasemi
  • Article
    | Open Access

    Tracking single molecule movements is a challenging task, but highly desired for applications and fundamental studies. Here the authors reconstruct the sub-angstrom relative movements of a molecule interacting with a metal adatom, by measuring its vibrational spectrum in a self-assembled monolayer, continuously modified by the adatom in a nanoparticle-on-mirror construct.

    • Jack Griffiths
    • , Tamás Földes
    •  & Jeremy J. Baumberg
  • Article
    | Open Access

    Ion storage rings allow reactions to be studied over orders of magnitude in time, bridging the gap between typical experimental and astronomical timescales. Here the authors observe that polycyclic aromatic hydrocarbon fragments produced upon collision with He atoms at velocities typical of stellar winds and supernova shockwaves remain intact up to second timescales, thus may play an important role in interstellar chemistry.

    • Michael Gatchell
    • , João Ameixa
    •  & Henning Zettergren
  • Article
    | Open Access

    Compounds featuring long-lived luminescence have potential applications in a variety of fields, including anti-counterfeiting and switches. Here the authors report a lanthanide-based compound that exhibits phosphorescence observable by the naked eye for up to 30 s at 77 K; On-off continuous irradiation cycles reveal a charging behaviour associated with triplet-triplet absorption, showing a shorter rise lifetime than the decay lifetime.

    • Waygen Thor
    • , Yue Wu
    •  & Ka-Leung Wong
  • Article
    | Open Access

    Exciton-polaritons are typically formed in organic systems when the molecules are confined between metallic or dielectric mirrors. Here, the authors reveal that interactions between excitons and moderately confined photonic states within the bare organic film can also lead to polariton formation, making them the primary photoexcitation.

    • Raj Pandya
    • , Richard Y. S. Chen
    •  & Akshay Rao
  • Article
    | Open Access

    Knowing how individual water molecules interact with surfaces is crucial for understanding surface and interface phenomena. Here, the authors show how local water-water interactions enable an unforeseen and surprisingly rapid mechanism of atom exchange between a common mineral and its surroundings.

    • Zdenek Jakub
    • , Matthias Meier
    •  & Gareth S. Parkinson
  • Article
    | Open Access

    The most common oxidation state for lanthanides is +3. Here the authors use photoelectron spectroscopy and theoretical calculations to study half-sandwich complexes where a lanthanide center in the oxidation state +1 is bound to an aromatic wheel-like B82- ligand.

    • Wan-Lu Li
    • , Teng-Teng Chen
    •  & Lai-Sheng Wang
  • Article
    | Open Access

    The stereoselective analysis of mixtures of chiral compounds typically requires time-consuming chromatography. Here, the authors combine reaction based chiroptical sensing and chemometric tools to directly determine the absolute configuration, enantiomeric composition and concentration of convoluted samples without physical separation.

    • Diandra S. Hassan
    •  & Christian Wolf
  • Article
    | Open Access

    Understanding the source of vibrationally excited molecular hydrogen is an essential prerequisite for understanding the chemical evolution in the universe. Here the authors report a photodissociation pathway to produce vibrationally excited H2 via the water photochemistry.

    • Yao Chang
    • , Feng An
    •  & Xueming Yang
  • Article
    | Open Access

    Living cells can harvest environmental energy to drive chemical processes. Here the authors design a minimal artificial system that achieves steady states at similar metabolic densities to microorganisms.

    • Andrea Testa
    • , Mirco Dindo
    •  & Paola Laurino
  • Article
    | Open Access

    In this manuscript, Negri, Zheng, Casado et al develop a stable and flexible diradical. Using a combination of experimental and theoretical techniques, they show how heating leads to change in the electronic and spin delocalizations ocurring between quinoidal and aromatic forms, and elucidate a unique spin-vibrational coupling.

    • Yi Shen
    • , Guodong Xue
    •  & Juan Casado
  • Article
    | Open Access

    Polycyclic aromatic hydrocarbons play an important role in interstellar chemistry, where interaction with high energy photons can induce ionization and fragmentation reactions. Here the authors, with XUV-IR pump-probe experiments, investigate the ultrafast photoinduced dynamics of fluorene, phenanthrene and pyrene, providing insight into their preferred reaction channels.

    • J. W. L. Lee
    • , D. S. Tikhonov
    •  & M. Schnell
  • Article
    | Open Access

    Identifying a concerted or stepwise mechanism in Diels–Alder reactions is experimentally challenging. Here the authors demonstrate the coexistence of both mechanisms in the reaction of 2,3-dibromobuta-1,3-diene with propene ions, using a conformationally controlled molecular beam reacting with trapped ions and ab initio computations

    • Ardita Kilaj
    • , Jia Wang
    •  & Stefan Willitsch
  • Article
    | Open Access

    Molecular chaperones from the Hsp70 family can break up protein aggregates, including amyloids. Here, the authors utilize microfluidic diffusional sizing to assess the mechanism of α-synuclein (αS) disaggregation by the Hsc70–DnaJB1–Apg2 system, and show that single αS molecules are removed directly from the fibril ends.

    • Matthias M. Schneider
    • , Saurabh Gautam
    •  & Tuomas P. J. Knowles
  • Article
    | Open Access

    Creating atomically-precise quantum architectures with high digital fidelity and desired quantum states is an important goal for quantum technology applications. Here the authors devise an on-surface synthetic protocol to construct atomically-precise covalently linked organic quantum corrals with the formation of a series of new quantum resonance states.

    • Xinnan Peng
    • , Harshitra Mahalingam
    •  & Jiong Lu
  • Article
    | Open Access

    Aqueous solutions under nanoscale confinement exhibit interesting physicochemical properties. This work reports evidence on the spontaneous formation of two-dimensional alkali chloride crystalline/non-crystalline nanostructures in dilute aqueous solution under nanoscale confinement by computer simulations.

    • Wenhui Zhao
    • , Yunxiang Sun
    •  & Xiao Cheng Zeng
  • Article
    | Open Access

    High-nitrogen content polyhedral molecules are of fundamental interest for theory and for synthesis applications. The authors, using isomer selective, tunable soft photoionization reflectron time-of-flight mass spectrometry, identify the formation of a hitherto elusive prismatic P3N3 molecule during sublimation of PH3 and N2 ice mixtures exposed to energetic electrons.

    • Cheng Zhu
    • , André K. Eckhardt
    •  & Ralf I. Kaiser
  • Article
    | Open Access

    Ultrafast diffraction is fundamental in capturing the structural dynamics of molecules. Here, the authors establish a variant of quantum state tomography for arbitrary degrees of freedom to characterize the molecular quantum states, which will enable the reconstruction of a quantum molecular movie from diffraction data.

    • Ming Zhang
    • , Shuqiao Zhang
    •  & Zheng Li
  • Article
    | Open Access

    Commonly, large π-conjugated systems facilitate low-energy electronic transitions. Here, the authors demonstrate that the relief of excited-state antiaromaticity of the benzene core leads to large Stokes shifts, and allows the construction of emitters covering the entire visible spectrum without the need of extending π-conjugation.

    • Heechan Kim
    • , Woojin Park
    •  & Dongwhan Lee
  • Article
    | Open Access

    Here, the authors use solid-state NMR and EPR measurements to characterise the ATP hydrolysis transition state of the oligomeric bacterial DnaB helicase from Helicobacter pylori, which was trapped by using aluminium fluoride as a chemical mimic. They identify protein protons that coordinate to the phosphate groups of ADP and DNA and observe that the aluminium fluoride unit is highly mobile and fast-rotating.

    • Alexander A. Malär
    • , Nino Wili
    •  & Thomas Wiegand
  • Article
    | Open Access

    The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR spectroscopists.

    • Da-Wei Li
    • , Alexandar L. Hansen
    •  & Rafael Brüschweiler