Physical chemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    In the pseudogap state of cuprates, although diamagnetic signals have been detected, a Meissner effect has never been observed. Morenzoni and colleagues probe the local diamagnetic response in the normal state of an underdoped layer showing that a 'barrier' layer exhibits a Meissner effect.

    • Elvezio Morenzoni
    • , Bastian M. Wojek
    •  & Ivan Božović
  • Article
    | Open Access

    Observing superposition states of mesoscopic quantum systems is an ongoing challenge. Gerlichet al. report quantum interference of large tailor-made organic compounds, demonstrating delocalization and the quantum wave nature of entire molecules composed of up to 430 atoms.

    • Stefan Gerlich
    • , Sandra Eibenberger
    •  & Markus Arndt
  • Article |

    Monitoring the impact of annealing on nanometre-thick polymer layers provides new insight into the changes in the performance of macromolecular materials. Here, the authors present results showing a correlation between the deviations from bulk behaviour and the growth of an irreversibly adsorbed layer.

    • Simone Napolitano
    •  & Michael Wübbenhorst
  • Article |

    The formation of hydrophilic protein–protein interactions cannot be explained by charge–charge interactions. Here, molecular simulations reveal that water forms an adhesive hydrogen-bonded network between proteins, stabilizing intermediate states before the bound complex forms.

    • Mazen Ahmad
    • , Wei Gu
    •  & Volkhard Helms
  • Article |

    Defining the structure of amorphous solids is a challenge because of their lack of structural order. In this study, the authors combine experiment and theory to analyse the surface of amorphous selenium, and show that the differences between surface and bulk are attributable to a particular type of coordination defect.

    • T. Scopigno
    • , W. Steurer
    •  & T. Wagner
  • Article
    | Open Access

    Distinguishing closely related molecules using chemosensor materials is a continuing challenge. Here, an entangled porous coordination polymer is developed, which confines volatile organic compounds, and allows photoluminescence-based distinction of structurally similar aromatic molecules.

    • Yohei Takashima
    • , Virginia Martínez Martínez
    •  & Susumu Kitagawa
  • Article
    | Open Access

    Molecular fluctuations are a source of noise that can impede single-molecule identification. Here, quantum-fluctuation-induced inelastic noise is observed as current fluctuations in individual molecules, suggesting that inelastic noise could be used as a molecular signature.

    • Makusu Tsutsui
    • , Masateru Taniguchi
    •  & Tomoji Kawai
  • Article |

    The spatial scale over which metal–insulator transitions happen is not known, despite the importance of this phenomenon in basic and applied research. The authors show that in chromium-doped V2O3, with decreasing temperature, microscopic metallic domains coexist with an insulating background.

    • S. Lupi
    • , L. Baldassarre
    •  & M. Marsi
  • Article
    | Open Access

    Understanding the thermal transitions of confined polymers is important for the design of molecular scale devices. In this study, unusual thermal transitions are observed in polyethylene glycol chains incorporated in nanochannels of porous coordination polymers.

    • Takashi Uemura
    • , Nobuhiro Yanai
    •  & Susumu Kitagawa
  • Article |

    One challenge in the development of proton exchange fuel cells is the requirement for durable, high-conductivity electrolytes. The authors show that incorporating ionic liquids into synthetic block co-polymer electrolytes results in nanostructured membranes with much higher conductivities than currently available.

    • Sung Yeon Kim
    • , Suhan Kim
    •  & Moon Jeong Park
  • Article |

    The spontaneous ordering of molecules into two-dimensional arrays is usually a result of directional intermolecular interactions. Here, it is shown that electrospray-deposited Mn12(acetate)16forms filamentary aggregates driven by anisotropic interactions, which are a consequence of the complex shape of the molecule.

    • Alex Saywell
    • , Graziano Magnano
    •  & Peter H. Beton
  • Article
    | Open Access

    Chemical systems with switchable molecular spins could allow the development of materials with controllable spintronic properties. Here, the authors show that nitric oxide coordination to cobalt(II)tetraphenylporphyrin on a nickel surface, followed by thermal dissociation, leads to off-on spin switching.

    • Christian Wäckerlin
    • , Dorota Chylarecka
    •  & Nirmalya Ballav