Patch clamp articles within Nature Communications

Featured

  • Article
    | Open Access

    Cyclic AMP modulation of HCN channels underlies beta adrenergic stimulation of heart rate. Here, authors describe an intramolecular mechanism that controls cAMP affinity of the cyclic nucleotide binding domain of these channels.

    • Alessandro Porro
    • , Andrea Saponaro
    •  & Anna Moroni
  • Article
    | Open Access

    TPC2 is a lysosomal ion channel permeable to both calcium and sodium ions. Here, the authors show that TPC2 can selectively increase its calcium permeability when simultaneously challenged by both its natural activators- NAADP and PI(3,5)P2.

    • Yu Yuan
    • , Dawid Jaślan
    •  & Sandip Patel
  • Article
    | Open Access

    TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is implicated in various diseases, but its pharmacology remains poorly understood. Here, the authors combine cryo-EM and electrophysiology to elucidate the mechanism of TMEM16A inhibition by the pore blocker 1PBC.

    • Andy K. M. Lam
    • , Sonja Rutz
    •  & Raimund Dutzler
  • Article
    | Open Access

    Photoactivable toxins targeting ion channels have great potential to control cell activity. Here the authors report HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium channels; they validate this in cells, brain slices and in vivo on mice neuromuscular junctions.

    • Jérôme Montnach
    • , Laila Ananda Blömer
    •  & Michel De Waard
  • Article
    | Open Access

    GABAA receptors (GABAARs) cause inhibition in the brain by functioning as heteropentamers formed from multiple subunit types. Here, the authors demonstrate that receptors incorporating β3 subunits can spontaneously gate, which is modulated by protein kinases and neurosteroids to affect tonic inhibition.

    • Craig A. Sexton
    • , Reka Penzinger
    •  & Trevor G. Smart
  • Article
    | Open Access

    Patch clamp recording of neurons is slow and labor-intensive. Here the authors present a method for automated deep learning driven label-free image guided patch clamp physiology to perform measurements on hundreds of human and rodent neurons.

    • Krisztian Koos
    • , Gáspár Oláh
    •  & Peter Horvath
  • Article
    | Open Access

    Current media for neuronal cell and organoid cultures are suboptimal for functional imaging and optogenetics experiments, owing to phototoxicity and unphysiological performance. Here the authors formulate an optimised neuronal medium to support live cell imaging and electrophysiological activity.

    • Michael Zabolocki
    • , Kasandra McCormack
    •  & Cedric Bardy
  • Article
    | Open Access

    Human Bestrophin1 (hBest1), a calcium-activated chloride channel in retinal pigment epithelium (RPE), is essential for retina physiology. Using electrophysiological and structural approaches, the authors uncover an ATP-dependent activation mechanism of hBest1, and identify an ATP-binding motif.

    • Yu Zhang
    • , Alec Kittredge
    •  & Tingting Yang
  • Article
    | Open Access

    Tetrameric cationic channels specificity is determined by the sequence and structural conformation of their selectivity filter. Here, the authors show that a cationic channel from Tsukamurella paurometabola is non-selective due to a Ca2+-binding motif within its unusual proline-rich filter.

    • Balasundaresan Dhakshnamoorthy
    • , Ahmed Rohaim
    •  & Benoît Roux
  • Article
    | Open Access

    Dendritic spines located on individual neurons process information, but our understanding of the electrical behaviour of spines is still limited. Here, the authors use voltage-sensitive dye imaging techniques to monitor electrical signals from thin basal spines and show that synapses are not electrically isolated by the spine neck.

    • Marko A. Popovic
    • , Nicholas Carnevale
    •  & Dejan Zecevic