Organic chemistry articles from across Nature Portfolio

Organic chemistry is the study of the synthesis, structure, reactivity and properties of the diverse group of chemical compounds primarily constructed of carbon. All life on earth is carbon-based, thus organic chemistry is also the basis of biochemistry. The ability to form compounds containing long chains of carbon atoms is the basis of polymer chemistry.

Featured

Latest Research and Reviews

News and Comment

  • Comments & Opinion |

    Automation and real-time reaction monitoring have enabled data-rich experimentation, which is critically important in navigating the complexities of chemical synthesis. Linking real-time analysis with machine learning and artificial intelligence tools provides the opportunity to accelerate the identification of optimal reaction conditions and facilitate error-free autonomous synthesis. This Comment provides a viewpoint underscoring the growing significance of data-rich experiments and interdisciplinary approaches in driving future progress in synthetic chemistry.

    • Junliang Liu
    •  & Jason E. Hein
  • News & Views |

    Dipolar cycloadditions are excellent processes for generating heterocyclic systems from simple starting materials, but arenes as dipolarophiles have not been extensively explored. Now, the intramolecular dipolar cycloaddition of aromatic rings has been achieved using in situ generated diazoalkenes to produce bicyclic or tricyclic heterocycles.

    • Abraham Ustoyev
    •  & Mitchell P. Croatt
    Nature Chemistry 15, 745-746
  • News & Views |

    Aromatic molecules with multiple one-half twists are synthesized using different precursors and synthetic routes. The pseudo-helicoidal structural chirality of these molecules and the loop of the twisted π-electronic structure fully overlap, thus giving rise to enhanced chiroptical responses.

    • Qian Miao
    •  & Juan Casado
  • News & Views |

    Catenanes that are chiral owing to the relative orientation of their rings have always been referred to as ‘topologically chiral’. It is now shown that although in specific cases the stereochemistry is a topological property of the structure, the underlying stereogenic unit itself is not inherently topological in nature.

    Nature Chemistry 15, 753-754