Optics and photonics articles within Nature Communications

Featured

  • Article |

    A dual-contrast agent has been developed for combined ultrasound and photoacoustic imaging. This agent uses vaporization for ultrasound contrast enhancement and photoacoustic signal generation, providing significantly higher signals than thermal expansion, the most commonly used photoacoustic mechanism.

    • Katheryne Wilson
    • , Kimberly Homan
    •  & Stanislav Emelianov
  • Article |

    Optical vortex traps are appealing for handling delicate particles, but conventional techniques are challenging with objects smaller than the diffraction limit of light. By exploiting plasmonic resonances in gold diabolo nanoantennas, Kanget al. demonstrate low-power vortex trapping of nano-scale objects.

    • Ju-Hyung Kang
    • , Kipom Kim
    •  & Hong-Gyu Park
  • Article |

    Optical imaging and spectroscopy rely on understanding how light enters and propagates through turbid media, yet its behaviour near the point-of-entry has remained elusive. Now Vitkinet al. report an analytical solution to this problem and demonstrate its agreement with simulations and experiments.

    • Edward Vitkin
    • , Vladimir Turzhitsky
    •  & Lev T. Perelman
  • Article |

    Nanomechanical resonators are attractive as ultra-low concentration sensors of biomolecules, as their small scale allows for sensitive mass detection. Here, using a nanowire array as part of a photonic crystal, such a device is presented for light trapping, absorption and low-concentration sensing.

    • Yuerui Lu
    • , Songming Peng
    •  & Amit Lal
  • Article |

    The night sky viewed from Earth is very bright at infrared wavelengths due to atmospheric emission, making land-based astronomy difficult in this spectral region. Here, a photonic filter is demonstrated to suppress this unwanted light, opening new paths to infrared astronomy with current and future telescopes.

    • J. Bland-Hawthorn
    • , S.C. Ellis
    •  & C. Trinh
  • Article |

    Among the wide range of potential applications of graphene, photodetection is believed to be among the most promising. By combining graphene with plasmonic nanostructures, Duan and colleagues observe dramatic improvements in the efficiency and spectral sensitivity of graphene-based photodetectors.

    • Yuan Liu
    • , Rui Cheng
    •  & Xiangfeng Duan
  • Article
    | Open Access

    As quantum information processing continues to develop apace, the need for integrated photonic devices becomes ever greater for both fundamental measurements and technological applications. To this end, Crespiet al.demonstrate a high-fidelity photonic controlled-NOT gate on a glass chip.

    • Andrea Crespi
    • , Roberta Ramponi
    •  & Paolo Mataloni
  • Article
    | Open Access

    When two spatially separated parties flip a coin, it is impossible to choose between two alternatives in an unbiased manner. This study presents a quantum coin-flipping protocol that overcomes this problem and ensures a dishonest party cannot bias the outcome completely.

    • Guido Berlín
    • , Gilles Brassard
    •  & Wolfgang Tittel
  • Article |

    Generation of multipartite entanglement between quantum states is crucial for developing quantum computation systems, although it has proven harder to achieve for photons than ions. Here, an eight-photon entangled state based on four independent photon pairs is observed, beating the previous record of six.

    • Yun-Feng Huang
    • , Bi-Heng Liu
    •  & Guang-Can Guo
  • Article
    | Open Access

    Most quantum communication experiments are performed at visible wavelengths, yet practical, long-range schemes need photons in the telecommunications range. Here, down-conversion of a visible photon to the near-infrared is demonstrated, while retaining its entanglement to another visible photon.

    • Rikizo Ikuta
    • , Yoshiaki Kusaka
    •  & Nobuyuki Imoto
  • Article |

    The miniaturization of optical devices is crucial for their on-chip integration with a variety of technological applications. Here, Liuet al. present an ultracompact beam splitter to control the direction of light through the generation of surface plasmon polaritons.

    • John S.Q. Liu
    • , Ragip A. Pala
    •  & Mark L. Brongersma
  • Article |

    Quasi-three-dimensional plasmonic crystals have potential uses in miniaturized photonics. In this study, a method is described to enhance plasmonic resonance in the crystals by coupling them to optical modes of Fabry–Perot type cavities, with possible applications in photonic and sensor components.

    • Debashis Chanda
    • , Kazuki Shigeta
    •  & John A. Rogers
  • Article
    | Open Access

    Inertial sensors using atom interferometry have applications in geophysics, navigation- and space-based tests of fundamental physics. Here, the first operation of an atom accelerometer during parabolic flights is reported, demonstrating high-resolution measurements at both 1g and 0g.

    • R. Geiger
    • , V. Ménoret
    •  & P. Bouyer
  • Article |

    Plasmonic nanostructures can be used to manipulate objects larger than the wavelength of light but create thermal heating. In this work, the trapping and controlled rotation of nanoparticles is demonstrated using a plasmonic nanotweezer with a heat sink, predicting a reduction in heating compared with previous designs.

    • Kai Wang
    • , Ethan Schonbrun
    •  & Kenneth B. Crozier
  • Article |

    Photodetection is believed to be among the most promising potential applications for graphene. Here, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors is increased by up to two orders of magnitude.

    • T.J. Echtermeyer
    • , L. Britnell
    •  & K.S. Novoselov
  • Article
    | Open Access

    Various methods have been investigated to locally control atmospheric precipitation. In this study, field experiments show that laser-induced condensation is initiated when the relative humidity exceeds 70%, and that this effect is largely a result of photochemical HNO3formation.

    • S. Henin
    • , Y. Petit
    •  & J.-P. Wolf
  • Article |

    Multiple scattering complicates femtosecond optics such that phase conjugation allows spatial focusing and imaging through a multiple scattering medium, but temporal control is problematic. McCabeet al. report the full spatio-temporal characterization and recompression of a femtosecond speckle field.

    • David J. McCabe
    • , Ayhan Tajalli
    •  & Béatrice Chatel
  • Article |

    The development of practical photonic quantum technologies will be aided by the spatial control of entangled photons. Lenget al. achieve on-chip spatial control of entangled photons by using domain engineering, rather than by using external optical elements.

    • H.Y. Leng
    • , X.Q. Yu
    •  & S.N. Zhu
  • Article
    | Open Access

    Single atoms can be detected using optical resonators that extend the lifetime of the photon. Here, the authors demonstrate fast, high-fidelity detection of very low atom densities using a microfabricated optical cavity to couple the detection light with the atoms.

    • J. Goldwin
    • , M. Trupke
    •  & E.A. Hinds
  • Article
    | Open Access

    Quantum computing has advantages over conventional computing, but the complexity of quantum algorithms creates technological challenges. Here, an architecture-independent technique, that simplifies adding control qubits to arbitrary quantum operations, is developed and demonstrated.

    • Xiao-Qi Zhou
    • , Timothy C. Ralph
    •  & Jeremy L. O'Brien
  • Article |

    Brillouin interactions between sound and light can excite mechanical resonances in photonic microsystems, with potential for sensing and frequency reference applications. The authors demonstrate experimental excitation of mechanical resonances ranging from 49 to 1,400 MHz using forward Brillouin scattering.

    • Gaurav Bahl
    • , John Zehnpfennig
    •  & Tal Carmon
  • Article
    | Open Access

    Optical computing, involving on-chip integrated logic units, could provide improved performance over semiconductor-based computing. Here, a binary NOR gate is developed from cascaded OR and NOT gates in four-terminal plasmonic nanowire networks; the work could lead to new optical computing technologies.

    • Hong Wei
    • , Zhuoxian Wang
    •  & Hongxing Xu
  • Article
    | Open Access

    Two-qubit operation is an essential part of quantum computation, but implementation has been difficult. Gotoet al.introduce optically controllable internuclear coupling in semiconductors providing a simple way of switching inter-qubit couplings in semiconductor-based quantum computers.

    • Atsushi Goto
    • , Shinobu Ohki
    •  & Tadashi Shimizu
  • Article |

    Waveplates are used in optoelectronics to alter the polarization of light, but they do not typically perform achromatically, which is important for applications such as three-dimensional displays. Here, biologically inspired periodically multilayered structures are produced, which function as achromatic visible-light waveplates.

    • Yi-Jun Jen
    • , Akhlesh Lakhtakia
    •  & Jyun-Rong Lai
  • Article
    | Open Access

    Light–matter interactions can be used to manipulate magnetization in solids, but light-controlled magnetization vector motion has not been demonstrated. Here, two-dimensional magnetic oscillations in NiO are manipulated with optical pulses leading to vectorial control of magnetization by light.

    • Natsuki Kanda
    • , Takuya Higuchi
    •  & Makoto Kuwata-Gonokami
  • Article |

    Optoelectronic devices such as conventional semiconductor lasers are used to study the chaotic behaviour of nonlinear systems. Here chaos is observed for quantum-dot microlasers operating close to the quantum limit with potential for new directions in the study of chaos in quantum systems.

    • Ferdinand Albert
    • , Caspar Hopfmann
    •  & Ido Kanter
  • Article |

    Metal-based nanostructures offer a solution to scale down photonics to the nanoscale. Sorgeret al. directly demonstrate waveguiding of ultra-small propagating waves at visible and near-infrared frequencies using NSOM imaging, with the potential for nanoscale photonic applications such as bio-sensing.

    • Volker J. Sorger
    • , Ziliang Ye
    •  & Xiang Zhang
  • Article
    | Open Access

    Optical nanoantennas can be used for spectroscopic investigations at previously unattainable dimensions. Schumacheret al.describe time-resolved antenna-enhanced ultrafast nonlinear optical spectroscopy and determine the transient absorption signal of a single gold nanoparticle.

    • Thorsten Schumacher
    • , Kai Kratzer
    •  & Markus Lippitz
  • Article
    | Open Access

    Bose–Einstein condensation of excitons in thermal equilibrium is a predicted quantum statistical phenomenon that has been difficult to observe. Yoshiokaet al. cool trapped excitons to sub-Kelvin temperatures and show that condensation manifests itself as a relaxation explosion as has been observed for atomic hydrogen.

    • Kosuke Yoshioka
    • , Eunmi Chae
    •  & Makoto Kuwata-Gonokami
  • Article
    | Open Access

    Wave mixing in optical resonators suffers from strong bandwidth constraints, hindering practical implementation. Morichettiet al. report travelling-wave four-wavemixing in coupled ring resonators, which combines the efficiency enhancement of resonant propagation with a wide-band conversion process.

    • Francesco Morichetti
    • , Antonio Canciamilla
    •  & Andrea Melloni
  • Article |

    Nanometallic optical antennas can concentrate light into a deep-subwavelength volume for sensor and photovoltaic applications. Junet al. demonstrate an optical antenna design that achieves a high level of control over fluorescent emission for a wide range of nanoscale optical spectroscopy applications.

    • Young Chul Jun
    • , Kevin C.Y. Huang
    •  & Mark L. Brongersma
  • Article |

    Infrared cameras are used for night vision and in medical diagnostics, but currently only present monochrome images. Krishnaet al. demonstrate a monolithically intergrated plasmonic infrared quantum dot camera as a step towards coloured infrared imaging.

    • Sang Jun Lee
    • , Zahyun Ku
    •  & Sam Kyu Noh
  • Article
    | Open Access

    Electron–hole exchange interaction is an intrinsic property of semiconductors, which affects their fine structure. Brovelliet al. demonstrate a nanoengineering-based approach that provides control over the exchange interaction energy at nearly constant emission energy, which cannot be carried out using core-only nanocrystals.

    • S. Brovelli
    • , R.D. Schaller
    •  & V.I. Klimov
  • Article
    | Open Access

    Nanoantennas may be important for future photonic circuits; they combine an emitter or detector with free-space propagation of light. Dregelyet al. fabricate an array of 3D optical Yagi–Uda nanoantennas and show that radiofrequency antenna array concepts applied to the optical regime can provide improved directional properties.

    • Daniel Dregely
    • , Richard Taubert
    •  & Harald Giessen
  • Article |

    Bismuth ferrite has photoelectric properties that make it an attractive alternative for use in photovoltaic devices. Here, using photoelectric atomic force microscopy, the authors show that photogenerated carriers can be collected by the tip and suggest that this can be used in photoelectric applications.

    • Marin Alexe
    •  & Dietrich Hesse
  • Article
    | Open Access

    Multimode interference devices could allow the implementation of multiport circuits for quantum technologies. Here, quantum interference is demonstrated in 2×2 and 4×4 multimode interference devices, and a technique is reported to characterize such devices.

    • Alberto Peruzzo
    • , Anthony Laing
    •  & Jeremy L. O'Brien
  • Article
    | Open Access

    Until now, invisibility cloaks have only covered a region of a few wavelengths because of their nanostructured materials. Chenet al.describe a macroscopic cloak, made of calcite birefringent crystals, which works for a specific polarization at visible wavelengths.

    • Xianzhong Chen
    • , Yu Luo
    •  & Shuang Zhang
  • Article
    | Open Access

    Efficient memory systems are vital for the development of quantum communications technologies. Hosseini and colleagues describe an optical memory based on warm rubidium vapour that achieves 87% pulse recall efficiency, illustrating the potential of warm atomic vapour systems for quantum memory.

    • M. Hosseini
    • , B.M. Sparkes
    •  & B.C. Buchler
  • Article |

    Although hyperlenses made of metamaterials can image sub-diffraction-limited objects, they are limited to one-dimensional magnification and ultraviolet frequencies. Here, the authors demonstrate a spherical hyperlens for visible light far-field imaging, with a resolution of 160 nm in both lateral dimensions.

    • Junsuk Rho
    • , Ziliang Ye
    •  & Xiang Zhang
  • Article |

    The development of optical information processing depends on the demonstration of silicon-based all-optical circuit components. Here, the authors show a monolithic pulse compressor, compatible with current electronic processing technologies, which is able to function at low power input.

    • Dawn T.H. Tan
    • , Pang C. Sun
    •  & Yeshaiahu Fainman
  • Article |

    The challenge of reconstructing the image of an object when viewed through an opaque material is of particular importance for biological tissues. Here, the authors show that it is possible to reconstruct the image of a complex object from interference patterns of multiple wavefronts using phase-shifting interferometry.

    • Sébastien Popoff
    • , Geoffroy Lerosey
    •  & Sylvain Gigan
  • Article
    | Open Access

    The phase of a laser pulse is usually random, which prevents its use for phase-resolved measurements. Here, the authors seed a quantum cascade laser with coherent terahertz pulses, forcing laser action to start on a fixed phase. This kind of laser could be used as a source in time-domain spectroscopy.

    • Dimitri Oustinov
    • , Nathan Jukam
    •  & Sukhdeep Dhillon