Optics and photonics articles within Nature Communications

Featured

  • Article
    | Open Access

    The Authors present a universal framework that utilizes photonic integrated circuits (PIC) to enhance the efficiency of reinforcement learning (RL). Leveraging the advantages of the hybrid architecture PIC (HyArch PIC), the PIC-RL experiment demonstrates a remarkable 56% improvement in efficiency for synthesizing perovskite materials.

    • Xuan-Kun Li
    • , Jian-Xu Ma
    •  & Xian-Min Jin
  • Article
    | Open Access

    Waterproof flexible organic solar cells without compromising mechanical flexibility and conformability remains challenging. Here, the authors demonstrate in-situ growth of hole-transporting layer to strengthen interfacial and thermodynamic adhesion for better waterproofness in 3 μm-thick devices.

    • Sixing Xiong
    • , Kenjiro Fukuda
    •  & Takao Someya
  • Comment
    | Open Access

    Synthetic optical materials have been recently employed as a powerful platform for the emulation of topological phenomena in wave physics. Topological phases offer exciting opportunities, not only for fundamental physics demonstrations, but also for practical technologies. Yet, their impact has so far been primarily limited to their claimed enhanced robustness. Here, we clarify the role of robustness in topological photonic systems, and we discuss how topological photonics may offer a wider range of important opportunities in science and for practical technologies, discussing emergent and exciting research directions.

    • Alexander B. Khanikaev
    •  & Andrea Alù
  • Article
    | Open Access

    The authors showcase a five-channel silicon microring modulator array with a total data rate in the terabit range. Each microring is equipped with two separate Z-shape junctions to overcome the bandwidth and modulation efficiency trade-off, providing a pathway for future 200 Gb/s/lane silicon optical interconnects.

    • Yuan Yuan
    • , Yiwei Peng
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    Here the authors unveil an approach rooted in non-Hermitian physics to precisely control light amplification in an integrated photonic platform, paving the way for innovative on-chip functionalities, like coherent control of light amplification and routing.

    • Weijie Liu
    • , Quancheng Liu
    •  & Feng Chen
  • Article
    | Open Access

    Silicon microring resonator plays crucial role in optical computing owing to the compact footprint and energy-efficiency, yet existing modulators require >2 V to drive it. Here, the authors present a solution to this by using metal-oxide-semiconductor capacitor microring that brings down the driving voltage to 0.8 V.

    • Wei-Che Hsu
    • , Nabila Nujhat
    •  & Alan X. Wang
  • Article
    | Open Access

    Nonlinear epsilon-near-zero nanodevices are attractive solutions for large-scale integrated system-on-chips yet heat genearation upon operation affects their performance. Here, the authors studied the linear and nonlinear thermo-optic effects in the indium tin oxide, commonly used material for this system.

    • Jiaye Wu
    • , Marco Clementi
    •  & Camille-Sophie Brès
  • Article
    | Open Access

    The charge-density-wave Weyl semimetal (TaSe4)2I is a candidate for an axion insulator, however it may be obscured by polaron physics. Here, using ultrafast terahertz photocurrent spectroscopy, the authors realize phase switches from the polaronic state, to the charge density wave phase, and to the Weyl phase.

    • Bing Cheng
    • , Di Cheng
    •  & Jigang Wang
  • Perspective
    | Open Access

    In order to complete the transition to the era of large-scale integration, silicon photonics will have to overcome several challenges. Here, the authors outline what these challenges are and what it will take to tackle them.

    • Sudip Shekhar
    • , Wim Bogaerts
    •  & Bhavin J. Shastri
  • Article
    | Open Access

    Here, the authors report the generation and manipulation of transient hyperbolic plasmons in black phosphorus via ultrafast photocarrier injection, demonstrating a topological transition of the non-equilibrium iso-frequency contours and the coexistence of different transient plasmonic modes.

    • Rao Fu
    • , Yusong Qu
    •  & Jianing Chen
  • Article
    | Open Access

    Progress has been made in the development of low-loss monocrystalline plasmonic metals, opening up opportunities for ultrathin nanophotonic architectures. Here, the authors reveal differences in hot-electron thermalisation dynamics between ultrathin monocrystalline and polycrystalline gold films.

    • Can O. Karaman
    • , Anton Yu. Bykov
    •  & Anatoly V. Zayats
  • Article
    | Open Access

    Scanning tunnelling microscopy-based H desorption lithography is used for atomic-scale patterning of quantum devices in Si, but its time-consuming nature hinders scalability. Here the authors report H desorption from Si(001):H surface using extreme-UV light and explore implications for patterning.

    • Procopios Constantinou
    • , Taylor J. Z. Stock
    •  & Steven R. Schofield
  • Article
    | Open Access

    Recent studies have reported miniaturized spectrometers based on van der Waals heterostructures. Here, the authors demonstrate multifunctional SnS2/ReSe2 heterojunction spectrometers providing photodetection, spectrum reconstruction, spectral imaging, long-term image memory, and signal processing capabilities.

    • Gang Wu
    • , Mohamed Abid
    •  & Han-Chun Wu
  • Article
    | Open Access

    Topological photonics could impact the scalability of integrated photonics, but it has shown limited reconfigurability to date. Here, the authors demonstrate reprogrammable integrated photonics as a nearly universal platform for topological models.

    • Mehmet Berkay On
    • , Farshid Ashtiani
    •  & Andrea Blanco-Redondo
  • Article
    | Open Access

    Multifunctional active mid-infrared ring resonators and directional couplers with quantum cascade laser cores allow electrical control of resonant frequency and quality factors, tunable filtering and frequency comb generation.

    • Dmitry Kazakov
    • , Theodore P. Letsou
    •  & Federico Capasso
  • Article
    | Open Access

    Light-matter interfaces implementing arbitrary conditional operations on incoming photons would have several applications in quantum computation and communications. Here, the authors demonstrate conditional polarization rotation induced by a single quantum dot spin embedded in an electrically contacted micropillar, spanning up to a pi flip.

    • E. Mehdi
    • , M. Gundín
    •  & L. Lanco
  • Article
    | Open Access

    Here, the authors report a high-performance broadband spectrometer based on a van der Waals heterostructure tunnel diode containing MoS2 and and black phosphorus, leveraging their electrically tunable photoresponse and advanced computational algorithms for spectral reconstruction.

    • Md Gius Uddin
    • , Susobhan Das
    •  & Zhipei Sun
  • Article
    | Open Access

    The precise role of cochaperones and ATP hydrolysis in driving Hsp90’s chaperone cycle is largely unclear. Here, the authors use single-molecule FRET to show that several cochaperones are necessary to establish directionality in Hsp90’s conformational cycle.

    • Leonie Vollmar
    • , Julia Schimpf
    •  & Thorsten Hugel
  • Article
    | Open Access

    Photonic integrated circuits have grown as potential hardware for neural networks and quantum computing, yet the tuning speed and large power consumption limited the application. Here, authors introduce the memresonator, a memristor heterogeneously integrated with a microring resonator, as a non-volatile silicon photonic phase shifter to address these limitations.

    • Bassem Tossoun
    • , Di Liang
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    Photonic Stochastic Emergent Storage is a neuromorphic photonic device for image storage and classification based on scattering-intrinsic patterns. Here, the authors show emergent storage employs stochastic prototype scattering-induced light patterns to generate categories corresponding to emergent archetypes.

    • Marco Leonetti
    • , Giorgio Gosti
    •  & Giancarlo Ruocco
  • Article
    | Open Access

    The intrinsic photovoltaic effect (IPVE) in noncentrosymmetric materials has the potential to overcome the limitations of traditional photovoltaic devices. Here, the authors report the observation of a strong and gate-tunable IPVE in 1D grain boundaries of a van der Waals semiconductor, ReS2.

    • Yongheng Zhou
    • , Xin Zhou
    •  & Xiaolong Chen
  • Article
    | Open Access

    Enhanced sensitivity is a key parameter in quantum metrology. Here the authors demonstrate a distributed quantum phase sensing method that uses fewer photons than the number of parameters needed, and an enhanced quantum sensitivity is achieved.

    • Dong-Hyun Kim
    • , Seongjin Hong
    •  & Hyang-Tag Lim
  • Article
    | Open Access

    The authors propose and demonstrate a novel integrated spectrometer that measures any arbitrary spectrum with two-dimensional Fourier transform, breaking the scalability limit in chip-scale spectrometry.

    • Hongnan Xu
    • , Yue Qin
    •  & Hon Ki Tsang
  • Article
    | Open Access

    Drones are an effective and flexible tool for safety assessment of aging infrastructure, especially in locations with challenging accessibility. Here, authors demonstrate a phase-based sampling moiré technique with a drone for measurement of millimeter-scale infrastructural displacement in bridges.

    • Shien Ri
    • , Jiaxing Ye
    •  & Norihiko Ogura
  • Article
    | Open Access

    Authors showcase 3D direct laser writing to fabricate optically interfaced mechanical resonators. The membrane-type structures are placed inside fiber Fabry-Perot cavities to realize a miniaturized optical cavity. Further, the optomechanical properties reveal the coupling mechanism and a significant tuning of the mechanical resonator frequency.

    • Lukas Tenbrake
    • , Alexander Faßbender
    •  & Hannes Pfeifer
  • Article
    | Open Access

    Here the authors experimentally realize the electrical tuning of branched flow of light in nematic liquid crystals. The statistical properties and the polarization effect of the branched flow of light in the film are systematically studied adding fundamental insights on branched flow of light.

    • Shan-shan Chang
    • , Ke-Hui Wu
    •  & Jin-hui Chen
  • Article
    | Open Access

    Here the authors demonstrate a universal approach to achieve turnkey dissipative Kerr soliton (DKS) frequency comb. Phase insensitivity, self-healing capability, deterministic selection of DKS state, and access to ultralow noise are all successfully accomplished.

    • Mingming Nie
    • , Jonathan Musgrave
    •  & Shu-Wei Huang
  • Perspective
    | Open Access

    In this Perspective, the authors illustrate the physics of hyperbolic polaritons in anisotropic 2D and 1D materials, proposing new potential material candidates, forward looking opportunities and technological applications.

    • Hongwei Wang
    • , Anshuman Kumar
    •  & Tony Low
  • Article
    | Open Access

    The requirement for sophisticated objective lenses hinders the miniaturisation of single molecule fluorescence spectroscopy for portable sensing applications. Here, the authors demonstrate a dual-wavelength metalens for real-time monitoring of individual fluorescent nanoparticles.

    • Aleksandr Barulin
    • , Yeseul Kim
    •  & Inki Kim
  • Article
    | Open Access

    Pulses of adjustable duration are generated by a mode-locked random fibre laser that can drive advances in sensing. Rayleigh backscattering from cm-long sections of telecom fibre provides laser feedback and spectral selectivity to the Fourier limit.

    • Jean Pierre von der Weid
    • , Marlon M. Correia
    •  & Walter Margulis
  • Article
    | Open Access

    Chiroptic sensing of single molecule is extremely challenging. Here the authors unveil an extreme nanophotonic system based on nanoparticle-on-mirror shows exceptional high sensitivity of chiral supramolecules, which can resolve enantiomer access of a racemate monolayer, exhibiting great potential for single chiral molecule sensing.

    • Chi Zhang
    • , Huatian Hu
    •  & Tao Ding
  • Article
    | Open Access

    Conventional optical tomography can have disadvantages, including anisotropic resolution and incomplete imaging of cellular structures. Here, the authors propose an AI-driven 3D cell imaging system with a cell rotator, which offers improved resolution and automated processing.

    • Jiawei Sun
    • , Bin Yang
    •  & Juergen W. Czarske
  • Article
    | Open Access

    Ultrafast spectroscopy enables characterization and control of non-equilibrium states. Here the authors introduce a stochastic thermodynamics approach to calculate entropy production in a material under ultrafast excitation, using ionic displacement data from time-resolved X-ray scattering experiments.

    • Lorenzo Caprini
    • , Hartmut Löwen
    •  & R. Matthias Geilhufe