Nanoscale materials articles within Nature Communications

Featured

  • Article
    | Open Access

    Self-assembly of DNA can provide access to a range of nanoscale structures, but assembly using magnesium has been considered essential. Martin and Dietz report conditions that allow the assembly of templated, multi-layer DNA structures in the presence of monovalent ions, rather than magnesium.

    • Thomas G. Martin
    •  & Hendrik Dietz
  • Article |

    Strain in Si nanostructures is used to achieve higher carrier mobility, making these devices candidates for the next generation of transistors. Minamisawaet al. fabricate silicon nanowires subject to elastic tensile strain up to 4.5%, exceeding the limit achievable with the use of SiGe virtual substrates.

    • R.A. Minamisawa
    • , M.J. Süess
    •  & H. Sigg
  • Article |

    Well-defined, monodisperse colloids of semiconducting polymers are required as new photonic and optoelectronic materials. Here, a Suzuki–Miyaura dispersion polymerization is used to produce monodisperse sub-micrometer particles of a range of semiconducting polymers.

    • Alexander J.C. Kuehne
    • , Malte C. Gather
    •  & Joris Sprakel
  • Article
    | Open Access

    A signature of the Dirac-like physics of charge carriers in graphene is the occurrence of an anomalous Hall effect, resulting in a quantization of the Landau levels. Guoet al. observe Landau levels of Dirac fermions in potassium-intercalated graphite arising in the absence of an applied magnetic field.

    • Donghui Guo
    • , Takahiro Kondo
    •  & Junji Nakamura
  • Article |

    Supramolecular interactions allow some small molecules to self-assemble into nanofibres and hydrogels in aqueous environments. Gaoet al.report a hydrogelator that forms fluorescent nanofibres within cells, leading to the visualization of their self-assembly at the endoplasmic reticulum.

    • Yuan Gao
    • , Junfeng Shi
    •  & Bing Xu
  • Article |

    The spectral position of Raman peaks is a useful diagnostic for determining the degree of strain and excess electronic charges present in graphene. This study demonstrates that these two contributions can be separated from each other and therefore be obtained at the same time.

    • Ji Eun Lee
    • , Gwanghyun Ahn
    •  & Sunmin Ryu
  • Article |

    Signal modulation is a mechanism which embeds an information-carrying signal into a carrier wave to broadcast information and is essential for high-speed communication. Zhonget al. report a flexible, transparent all-graphene modulator circuit performing quaternary modulation schemes with only two transistors.

    • Seunghyun Lee
    • , Kyunghoon Lee
    •  & Zhaohui Zhong
  • Article |

    Understanding ultrafast demagnetisation is key to manipulating magnetic structures on fast timescales, yet laser sources limit the attainable spatial resolution. Here, a soft X-ray high harmonic source enables a high temporal and spatial resolution study of domain demagnetisation in [Co/Pt]30multilayer films.

    • Boris Vodungbo
    • , Julien Gautier
    •  & Jan Lüning
  • Article
    | Open Access

    Along with its electronic characteristics, the spin properties of graphene have recently received increasing attention in the context of spintronic applications. Using microwave radiation, Maniet al. identify resistively detected spin resonance in monolayer and trilayer graphene sheets and extract the value for the Landé g-factor.

    • Ramesh G. Mani
    • , John Hankinson
    •  & Walter A. de Heer
  • Article
    | Open Access

    Crystallization of noble metal atoms usually leads to the thermodynamically stable face-centred cubic phase. Sunet al. show that internal strain in silver nanoparticles leads to lattice distortion and a stable body-centred tetragonal phase.

    • Yugang Sun
    • , Yang Ren
    •  & Dean J. Miller
  • Article |

    Chiral metamaterials present interesting ways to manipulate and distinguish between different circular polarizations of light. Zhanget al. realize chiral metamaterials that exhibit photoinduced switching between left- and right-handed circular polarization interactions at terahertz frequencies.

    • Shuang Zhang
    • , Jiangfeng Zhou
    •  & Xiang Zhang
  • Article |

    Single electron pumps have been proposed as potential candidates for redefining the ampere. This study reports measurements of the quantized current flowing through a semiconductor electron pump with a precision that makes a substantial step towards establishing a direct metric for electrical currents.

    • S.P. Giblin
    • , M. Kataoka
    •  & D.A. Ritchie
  • Article |

    The ability to manipulate single charges is a key requisite for novel nanoelectronic devices. Allenet al. show how to electrostatically confine electrons in suspended bilayer graphene quantum dots by local control of the graphene band structure.

    • M. T. Allen
    • , J. Martin
    •  & A. Yacoby
  • Article |

    Stretchable electronics based on conducting polymers offer new opportunities for designing flexible technologies. Parket al. build three-dimensional nanostructures from elastomers soaked with liquid metal to produce stretchable conductors with greatly improved strain properties over solid films.

    • Junyong Park
    • , Shuodao Wang
    •  & Seokwoo Jeon
  • Article
    | Open Access

    Nanocrystal quantum dots can exhibit photoluminescence blinking, where the intensity of the emitted light fluctuates due to random charging and discharging. Gallandet al.study thick shell nanocrystals and find that the photoluminescence lifetime can also undergo blinking, without intensity changes.

    • Christophe Galland
    • , Yagnaseni Ghosh
    •  & Victor I. Klimov
  • Article |

    Devices made up of nanowires offer promise for a range of electronic, photonic and energy applications. Liuet al. fabricate a miniature capacitor by employing a thin layer of Cu2O as a separator between layers of carbon and copper.

    • Zheng Liu
    • , Yongjie Zhan
    •  & Pulickel M. Ajayan
  • Article |

    The electromotive force is a well established phenomenon that is induced by a varying magnetic field. Here, Tanabeet al. report a compelling experimental confirmation of its spin-induced analogue, the spinmotive force.

    • K. Tanabe
    • , D. Chiba
    •  & T. Ono
  • Article |

    The formation mechanisms of fullerenes remain unclear. This study shows that fullerenes self-assemble through a closed network growth mechanism in which atomic carbon and C2are incorporated into the growing closed cages.

    • Paul W. Dunk
    • , Nathan K. Kaiser
    •  & Harold W. Kroto
  • Article |

    Strain engineering has been proposed as a promising strategy for manipulating the electronic properties of graphene. This scanning tunnelling microscopy study demonstrates the feasibility of controlling strain patterns in graphene down to the nanoscale.

    • Jiong Lu
    • , A.H. Castro Neto
    •  & Kian Ping Loh
  • Article
    | Open Access

    Electronic and optoelectronic devices based on gallium nitride suffer from self-heating arising as a result of their operation. This study presents and demonstrates a strategy for managing this problem that relies on graphene quilts which dissipate the heat away.

    • Zhong Yan
    • , Guanxiong Liu
    •  & Alexander A. Balandin
  • Article |

    Graphene is characterized by unique physical properties that offer substantial promise, most notably for electronic applications. Mannooret al. present a wireless graphene-based sensor for detecting bacteria on a range of biological tissues.

    • Manu S. Mannoor
    • , Hu Tao
    •  & Michael C. McAlpine
  • Article |

    The singular properties of topological insulators are defined by the topological nature of their metallic surface states. This study shows that by doping Bi2Se3nanoribbons with antimony, the transport properties of these surface states are measurable and can be distinguished from the contributions due to the bulk of the samples.

    • Seung Sae Hong
    • , Judy J. Cha
    •  & Yi Cui
  • Article |

    The spin-dependent thermal and electrical transport properties of nanostructures are central for future applications of spintronic devices. Here, Linet al. report an enhanced spin-dependent thermoelectric effect in an Al2O3-based magnetic tunnel junction.

    • Weiwei Lin
    • , Michel Hehn
    •  & Stéphane Mangin
  • Article
    | Open Access

    Single-photon sources are important for quantum optical technologies, although achieving efficient light extraction from them with waveguides is limited in top-down approaches. Reimeret al. show a high extraction efficiency using a bottom-up method to grow quantum dots on the axis of nanowire waveguides.

    • Michael E. Reimer
    • , Gabriele Bulgarini
    •  & Val Zwiller
  • Article |

    Imaging and tracking the motion of single molecules on cell plasma membranes requires high spatial resolution in three dimensions. Honget al. develop a plasmonic ruler based on the fluorescence enhancement of carbon nanotubes on a gold plasmonic substrate, allowing the observation of nanotube endocytosis in three dimensions.

    • Guosong Hong
    • , Justin Z. Wu
    •  & Hongjie Dai
  • Article
    | Open Access

    Multicompartment micelles can be assembled from block copolymers but it is difficult to manipulate their hierarchical superstructures using straightforward concepts. Here, methods are developed that involve the pre-assembly of subunits for the structurally controlled production of micelles.

    • André H. Gröschel
    • , Felix H. Schacher
    •  & Axel H.E. Müller
  • Article
    | Open Access

    Grain boundaries in graphene degrade its properties, and large single-crystal graphene is desirable for electronic applications of graphene. Gaoet al. develop a method to produce millimetre-sized hexagonal single-crystal graphene grains, and films composed of the grains, on platinum by chemical vapour deposition.

    • Libo Gao
    • , Wencai Ren
    •  & Hui-Ming Cheng
  • Article
    | Open Access

    Minimising reflection from the interface between materials is an important goal for optical devices such as solar cells or photodetectors. Spinelliet al. show almost total loss of reflection over a broad spectral range from a silicon surface using periodic arrays of sub-wavelength silicon nanocylinders.

    • P. Spinelli
    • , M.A. Verschuuren
    •  & A. Polman
  • Article |

    Light-emitting diodes in the form of nanocrystals offer promise for environmental and biomedical diagnostics. Brovelliet al. present a method for realizing mechanically robust and chemically stable nanocrystals emitting light in the ultraviolet range.

    • Sergio Brovelli
    • , Norberto Chiodini
    •  & Alberto Paleari
  • Article
    | Open Access

    Field-effect transistors fabricated from carbon nanotubes have been investigated extensively over the past two decades. This study demonstrates a nanotube-based integrated circuit design that substantially improves the speed and power consumption with respect to silicon-based integrated circuits.

    • Li Ding
    • , Zhiyong Zhang
    •  & Lian-Mao Peng
  • Article |

    Current methods for fabricating graphene rely on its transfer from metal surfaces to substrates suitable for device applications. This study demonstrates a transfer-free approach for growing graphene on substrates such as thermally oxidized silicon and plastic that forms the material underneath a nickel film, at the nickel–substrate interface.

    • Jinsung Kwak
    • , Jae Hwan Chu
    •  & Soon-Yong Kwon
  • Article
    | Open Access

    Studying carrier multiplication in materials is important to understand their transport properties and interaction with light. Hiroriet al. show that intense terahertz pulses can generate electron-hole pairs in GaAs quantum wells that then emit infrared light, contrary to the effect with a DC field.

    • H. Hirori
    • , K. Shinokita
    •  & K. Tanaka
  • Article
    | Open Access

    Chiral liquid crystals of two-dimensional colloids have not been extensively investigated. Xu and Gao show that graphene oxide can form chiral liquid crystals, and demonstrate that they can be spun into macroscopic fibres, and that subsequent chemical reduction provides graphene fibres with high conductivity.

    • Zhen Xu
    •  & Chao Gao
  • Article |

    Among the wide range of potential applications of graphene, photodetection is believed to be among the most promising. By combining graphene with plasmonic nanostructures, Duan and colleagues observe dramatic improvements in the efficiency and spectral sensitivity of graphene-based photodetectors.

    • Yuan Liu
    • , Rui Cheng
    •  & Xiangfeng Duan
  • Article
    | Open Access

    The propagation of magnetic domain walls in nanowires offers promise as the basis of future memory storage technologies. Muñoz and Prieto show that the random pinning of domain walls to structural defects in the nanowires can be suppressed at low fields, thus improving the reliability of the transmission of the domain walls substantially.

    • Manuel Muñoz
    •  & José L. Prieto
  • Article |

    The controllable modification of graphene by chemical functionalization can modulate its optical and electronic properties. Sunet al. devise a functionalisation-based method to pattern graphane/graphene superlattices within a single sheet of graphene.

    • Zhengzong Sun
    • , Cary L. Pint
    •  & James M. Tour