Materials science articles within Nature Communications

Featured

  • Article |

    Transistors based on ions, as opposed to electrons, offer the promise of bridging the gap between technological and biological systems. Tybrandtet al. present logic gates based on ion bipolar junction transistors that operate at concentrations compatible with biological systems.

    • Klas Tybrandt
    • , Robert Forchheimer
    •  & Magnus Berggren
  • Article
    | Open Access

    The coupling that occurs between the structural and the magnetic properties of magnetic materials leads to a host of magnetoresponsive effects that are useful for potential technological applications. Here, a strong magnetostructural coupling that persists over a wide temperature range is reported in MnNiGe:Fe alloys.

    • Enke Liu
    • , Wenhong Wang
    •  & Frank de Boer
  • Article
    | Open Access

    The motion of domain walls in magnetic materials characterized by a perpendicular axis of magnetization is a promising means of controlling information in future memory and logic devices. Schellekenset al. show the velocity of domain walls in such systems can be controlled by using an applied electric field.

    • A.J. Schellekens
    • , A. van den Brink
    •  & B. Koopmans
  • Article |

    The electromotive force is a well established phenomenon that is induced by a varying magnetic field. Here, Tanabeet al. report a compelling experimental confirmation of its spin-induced analogue, the spinmotive force.

    • K. Tanabe
    • , D. Chiba
    •  & T. Ono
  • Article |

    The formation mechanisms of fullerenes remain unclear. This study shows that fullerenes self-assemble through a closed network growth mechanism in which atomic carbon and C2are incorporated into the growing closed cages.

    • Paul W. Dunk
    • , Nathan K. Kaiser
    •  & Harold W. Kroto
  • Article
    | Open Access

    Resonant magnetic excitations are common in unconventional superconductors, but the mechanism for their formation is elusive. Using inelastic neutron scattering, this study finds similar excitations in the non-superconducting heavy-fermion metal CeB6, suggesting common behaviour between the two ground states.

    • G. Friemel
    • , Yuan Li
    •  & D.S. Inosov
  • Article |

    Light propagating in a medium can undergo polarization rotation, an effect that depends on light intensity and chiral properties. Renet al. report polarization rotation in a plasmonic metamaterial with million-fold stronger nonlinearity than that found in natural crystals.

    • Mengxin Ren
    • , Eric Plum
    •  & Nikolay I. Zheludev
  • Article
    | Open Access

    The compositional makeup of skeletons and teeth in invertebrates and vertebrates is generally different. This study examines the material composition and properties of freshwater crayfish mandibles and finds, in an unusual case of convergent evolution, that they are composed of an apatite layer that is similar to mammalian enamel.

    • Shmuel Bentov
    • , Paul Zaslansky
    •  & Barbara Aichmayer
  • Article |

    Strain engineering has been proposed as a promising strategy for manipulating the electronic properties of graphene. This scanning tunnelling microscopy study demonstrates the feasibility of controlling strain patterns in graphene down to the nanoscale.

    • Jiong Lu
    • , A.H. Castro Neto
    •  & Kian Ping Loh
  • Article
    | Open Access

    Electronic and optoelectronic devices based on gallium nitride suffer from self-heating arising as a result of their operation. This study presents and demonstrates a strategy for managing this problem that relies on graphene quilts which dissipate the heat away.

    • Zhong Yan
    • , Guanxiong Liu
    •  & Alexander A. Balandin
  • Article |

    Tuning the properties of responsive materials by applying an external stimulus could lead to their application as chemical switches or molecular sensors. Coronadoet al. develop a non-porous one-dimensional coordination polymer, the magnetic properties of which undergo drastic changes on chemisorption of gaseous HCl.

    • Eugenio Coronado
    • , Mónica Giménez-Marqués
    •  & Lee Brammer
  • Article
    | Open Access

    Micromechanical oscillators present a route to miniaturisation of devices and may be used as frequency references or sensitive sensors, but their small size means that they often behave nonlinearly. Antonioet al. demonstrate frequency stabilisation of nonlinear resonators by coupling two vibrational modes.

    • Dario Antonio
    • , Damián H. Zanette
    •  & Daniel López
  • Article |

    Studying the structures of dense colloidal systems of anisotropic Brownian particles provides insight into fundamental processes like protein crystallization. Zhaoet al. study the phases of two-dimensional triatic liquid crystals and find that one of them exhibits local chiral-symmetry breaking.

    • Kun Zhao
    • , Robijn Bruinsma
    •  & Thomas G. Mason
  • Article |

    Flow lithography is used to synthesize microparticles but relies on polydimethylsiloxane microchannels for oxygen to permeate and inhibit polymerization near channel interfaces. Now, non-polydimethylsiloxane devices have been developed, which allow oxygen-free lithography, increasing the capabilities of flow lithography.

    • Ki Wan Bong
    • , Jingjing Xu
    •  & Patrick S. Doyle
  • Article |

    Electrochromic materials reversibly change their colour upon application of an electric field. Seidelet al. measure the optical properties of doped bismuth ferrite and report the largest electrochromic response for an inorganic material, which they attribute to the melting of oxygen-vacancy ordering.

    • J. Seidel
    • , W. Luo
    •  & R. Ramesh
  • Article |

    The assembly of microscopic particles into macroscopic structures may allow the fabrication of complex materials, but general strategies to provide a wide variety of structures are lacking. Khalilet al. develop a colloidal assembly system, which can be tuned to provide over 20 different pre-programmed structures.

    • Karim S. Khalil
    • , Amanda Sagastegui
    •  & Benjamin B. Yellen
  • Article |

    Studying the effects of extracellular matrix stiffening has been impeded because mostin vitromodels are static. Here, dynamic hydrogels are developed that stiffen in the presence of cells and are used to investigate the short-term (minutes-to-hours) and long-term (days-to-weeks) cellular responses to dynamic stiffening.

    • Murat Guvendiren
    •  & Jason A. Burdick
  • Article |

    Morphotropic phase boundaries—regions of abrupt structural change and enhanced material response—are of practical importance and are a challenge for the fundamental theory of phase transitions. Here, the ferroelectric–antiferroelectric boundary is studied using atomically resolved mapping in BiFeO3.

    • A.Y. Borisevich
    • , E.A. Eliseev
    •  & S.V. Kalinin
  • Article
    | Open Access

    Organic solar cells are promising for technological applications, as they are lightweight and mechanically robust. This study presents flexible organic solar cells that are less than 2 μm thick, have very low specific weight and maintain their photovoltaic performance under repeated mechanical deformation.

    • Martin Kaltenbrunner
    • , Matthew S. White
    •  & Siegfried Bauer
  • Article |

    Metamaterials can be used to alter the transmission of light or sound, with their tailored structures permitting control over their optical or acoustic properties. Meiet al. present a thin-film acoustic metamaterial that provides efficient absorption of sound over a broad range of wavelengths.

    • Jun Mei
    • , Guancong Ma
    •  & Ping Sheng
  • Article |

    Graphene is characterized by unique physical properties that offer substantial promise, most notably for electronic applications. Mannooret al. present a wireless graphene-based sensor for detecting bacteria on a range of biological tissues.

    • Manu S. Mannoor
    • , Hu Tao
    •  & Michael C. McAlpine
  • Article |

    The spin-dependent thermal and electrical transport properties of nanostructures are central for future applications of spintronic devices. Here, Linet al. report an enhanced spin-dependent thermoelectric effect in an Al2O3-based magnetic tunnel junction.

    • Weiwei Lin
    • , Michel Hehn
    •  & Stéphane Mangin
  • Article
    | Open Access

    The piezoelectric materials most commonly used for technological applications contain lead, a toxic element. Slukaet al. identify a mechanism that leads to an enhancement of the dielectric and piezoelectric properties of non-toxic ferroelectrics, due to the presence of charged domain walls.

    • Tomas Sluka
    • , Alexander K. Tagantsev
    •  & Nava Setter
  • Article |

    The photosynthetic reaction centres, photosystems I and II, have been investigated for the light-induced generation of fuels and electrical power. Now, Yehezkeliet al. report a photobiofuel cell that generates electricity upon irradiation of photosystem II-functionalized electrodes in aqueous solutions.

    • Omer Yehezkeli
    • , Ran Tel-Vered
    •  & Itamar Willner
  • Article |

    Resistive switching devices are promising candidates for non-volatile memories. Usingin-situ and ex-situ transmission electron microscopy, Yang et al. present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.

    • Yuchao Yang
    • , Peng Gao
    •  & Wei Lu
  • Article |

    Exchange bias is a technologically relevant effect that occurs when thin ferromagnetic films are placed in direct proximity to antiferromagnets. Raduet al. show that an exchange bias occurs at room temperature in ferrimagnetic trilayers, in which the magnetization is aligned perpendicular to the structures.

    • F. Radu
    • , R. Abrudan
    •  & H. Zabel
  • Article |

    Ultrafast excitation offers new routes to controlling material properties on short timescales, but probes are needed to better understand the changes. By studying the phonon spectrum of VO2 in the time domain, Wall et al. find a prompt change in lattice potential after a photoinduced structural transition.

    • S. Wall
    • , D. Wegkamp
    •  & M. Wolf
  • Article
    | Open Access

    Point defects in diamond in the form of nitrogen vacancy centres are believed to be promising candidates for qubits in quantum computers. Grotzet al. present a method for manipulating the charge state of nitrogen vacancies using an electrolytic gate electrode.

    • Bernhard Grotz
    • , Moritz V. Hauf
    •  & Jose A. Garrido
  • Article |

    Organic electronic devices are promising for many applications, particularly in biomedical research, but are hindered by thermal instability and low melting points. Now, organic thin-film transistors are shown with excellent thermal properties that can withstand medical sterilization processes.

    • Kazunori Kuribara
    • , He Wang
    •  & Takao Someya
  • Article |

    Teflon is a carbon based polymer that cannot be intrinsically ferromagnetic. This study shows that room temperature ferromagnetism can be induced in Teflon tape by applying mechanical stress such as stretching or cutting, which gives rise to dangling carbon bonds.

    • Y.W. Ma
    • , Y.H. Lu
    •  & J. Ding
  • Article
    | Open Access

    Biological materials efficiently exploit self-assembly of simple constituents to produce complex functional structures such as optical devices. By controlling organic molecules, Leeet al. show fast two-step self-assembly of CaCO3microlens arrays, reminiscent of their biological counterparts.

    • Kyubock Lee
    • , Wolfgang Wagermaier
    •  & Peter Fratzl
  • Article
    | Open Access

    Multicompartment micelles can be assembled from block copolymers but it is difficult to manipulate their hierarchical superstructures using straightforward concepts. Here, methods are developed that involve the pre-assembly of subunits for the structurally controlled production of micelles.

    • André H. Gröschel
    • , Felix H. Schacher
    •  & Axel H.E. Müller
  • Article
    | Open Access

    Grain boundaries in graphene degrade its properties, and large single-crystal graphene is desirable for electronic applications of graphene. Gaoet al. develop a method to produce millimetre-sized hexagonal single-crystal graphene grains, and films composed of the grains, on platinum by chemical vapour deposition.

    • Libo Gao
    • , Wencai Ren
    •  & Hui-Ming Cheng
  • Article |

    Light-emitting diodes in the form of nanocrystals offer promise for environmental and biomedical diagnostics. Brovelliet al. present a method for realizing mechanically robust and chemically stable nanocrystals emitting light in the ultraviolet range.

    • Sergio Brovelli
    • , Norberto Chiodini
    •  & Alberto Paleari
  • Article |

    Tuning the bandgap of complex transition metal oxides in a manner that preserves their intrinsic properties has so far remained elusive. Choiet al. demonstrate that the bandgap of bismuth titanate can be varied by substitutional alloying with lanthanum cobaltate, without altering its ferroelectric properties.

    • Woo Seok Choi
    • , Matthew F. Chisholm
    •  & Ho Nyung Lee
  • Article |

    The spin–orbit interaction affects the electronic structure of many solids to give rise to a host of unusual phenomena. Bahramyet al.theoretically examine its role in the non-centrosymmetric compound BiTeI, and find that under the application of pressure, it leads to topologically insulating behaviour.

    • M.S. Bahramy
    • , B.-J. Yang
    •  & N. Nagaosa
  • Article
    | Open Access

    Field-effect transistors fabricated from carbon nanotubes have been investigated extensively over the past two decades. This study demonstrates a nanotube-based integrated circuit design that substantially improves the speed and power consumption with respect to silicon-based integrated circuits.

    • Li Ding
    • , Zhiyong Zhang
    •  & Lian-Mao Peng
  • Article |

    Strategies to tune the surface properties of topological insulators are essential, if they are to find use in applications. Using a combination of theoretical and experimental techniques, this study examines how the properties of ordered ternary topological insulators vary with the content of group IV elements.

    • Sergey V. Eremeev
    • , Gabriel Landolt
    •  & Evgueni V. Chulkov
  • Article |

    The surface electronic structure of topological insulators is characterized by a so-called Dirac cone energy dispersion. This study shows that by tuning the compositions in the compound Bi2−xSbxTe3−ySeyone can control the precise features of its Dirac cone structure while keeping it a bulk insulator.

    • T. Arakane
    • , T. Sato
    •  & Yoichi Ando