Materials for energy and catalysis articles within Nature Communications

Featured

  • Article |

    The main constraint on the large-scale use of platinum catalyst in energy-conversion devices is its cost. Hou et al.propose a screening strategy to search for non-platinum-based alternatives, which suggests that inexpensive and abundant ferric oxides exhibit comparable electrocatalytic activity to platinum.

    • Yu Hou
    • , Dong Wang
    •  & Hua Gui Yang
  • Article |

    Safe lithium-ion batteries require stable electrolytes with high chemical resistance and high thermal tolerance. Chen et al. find a solid lithium-salt electrolyte that is able to give rise to a prolonged battery life and a delayed decomposition of battery cathodes.

    • Zonghai Chen
    • , Yang Ren
    •  & Khalil Amine
  • Article |

    The synthesis of porous materials designed with specific applications in mind is fundamentally challenging. Here, the authors fabricate single-molecule trap cavities designed for complimentary interactions with CO2 and show that these traps can be assembled into materials with high CO2selectivity.

    • Jian-Rong Li
    • , Jiamei Yu
    •  & Hong-Cai Zhou
  • Article |

    The use of III-V semiconductor nanowires can overcome the need for lattice matching in multi-junction solar cells, which restricts the choice of materials and their bandgaps. This work demonstrates efficient solar cells with GaAsP single nanowires with tunable bandgap and grown on low-cost Si substrates.

    • Jeppe V. Holm
    • , Henrik I. Jørgensen
    •  & Martin Aagesen
  • Article
    | Open Access

    Arrays of III–V semiconductor nanopillars are promising photovoltaic materials due to their favourable optical properties, however, they show low power conversion efficiencies. Mariani et al. fabricate a GaAs nanopillar solar cell achieving an efficiency of 6.63% owing to surface passivation.

    • Giacomo Mariani
    • , Adam C. Scofield
    •  & Diana L. Huffaker
  • Article |

    A huge demand for lithium batteries necessitates more affordable alternatives. Sakaushi et al. describe rechargeable sodium batteries containing organic electrodes with a porous-honeycomb structure that are comparable to lithium batteries and capable of over 7,000 cycles.

    • Ken Sakaushi
    • , Eiji Hosono
    •  & Jürgen Eckert
  • Article
    | Open Access

    Tandem solar cell structures combine high- and low-bandgap materials, allowing a broader spectral absorption of solar radiation. The authors report the synthesis of a high performance low-bandgap polymer which enables fabrication of a tandem solar cell with a certified power conversion efficiency of 10.6%.

    • Jingbi You
    • , Letian Dou
    •  & Yang Yang
  • Article |

    Understanding charge transport and the fundamental limits on conductivity in polymer semiconductors is important for improving device performance. Wanget al. report a transport regime close to band-like conduction and the observation of the Hall effect in an electrochemically-doped polymer semiconductor.

    • Shun Wang
    • , Mingjing Ha
    •  & C Leighton
  • Article |

    The practical performance of lithium sulphide batteries is much less than their predicted performance because redox products dissolve over time. Su and Manthiram show that microporous carbon membranes inserted between cathode and separator localize soluble polysulphide species and improve battery cycling characteristics.

    • Yu-Sheng Su
    •  & Arumugam Manthiram
  • Article |

    The integration of volatile renewable energy sources into the electrical power grid will require a significant increase in electrical storage capacity. Here a new type of safe, fast, inexpensive and long-life aqueous electrolyte battery is reported, which may aid the development of increased grid capacity.

    • Mauro Pasta
    • , Colin D. Wessells
    •  & Yi Cui
  • Article |

    One of the obstacles to improving the efficiency of organic photovoltaic solar cells is the recombination of polaron pairs at the interface between donor and acceptor molecules. By doping cells with galvinoxyl radicals, Zhanget al. demonstrate a mechanism that overcomes this problem via a spin-flip process.

    • Ye Zhang
    • , Tek P. Basel
    •  & Z. Valy Vardeny
  • Article |

    Singlet fission converts single singlet excitons into pairs of triplet excitons, and it has been proposed to give additional photocurrent to solar cells. Ehrleret al. use lead selenide nanocrystals of varying sizes to measure the triplet energy in pentacene photovoltaic cells, and achieve efficiencies approaching 5%.

    • Bruno Ehrler
    • , Brian J. Walker
    •  & Neil C. Greenham
  • Article
    | Open Access

    Organic solar cells are promising for technological applications, as they are lightweight and mechanically robust. This study presents flexible organic solar cells that are less than 2 μm thick, have very low specific weight and maintain their photovoltaic performance under repeated mechanical deformation.

    • Martin Kaltenbrunner
    • , Matthew S. White
    •  & Siegfried Bauer
  • Article |

    The spin-dependent thermal and electrical transport properties of nanostructures are central for future applications of spintronic devices. Here, Linet al. report an enhanced spin-dependent thermoelectric effect in an Al2O3-based magnetic tunnel junction.

    • Weiwei Lin
    • , Michel Hehn
    •  & Stéphane Mangin
  • Article |

    The photosynthetic reaction centres, photosystems I and II, have been investigated for the light-induced generation of fuels and electrical power. Now, Yehezkeliet al. report a photobiofuel cell that generates electricity upon irradiation of photosystem II-functionalized electrodes in aqueous solutions.

    • Omer Yehezkeli
    • , Ran Tel-Vered
    •  & Itamar Willner
  • Article |

    Batteries that operate at high power and cycling efficiencies could facilitate the development of large-scale energy storage systems. Wessellset al.report a metal–organic framework electrode that operates in an inexpensive aqueous electrolyte with excellent capacity retention over a very large number of cycles.

    • Colin D. Wessells
    • , Robert A. Huggins
    •  & Yi Cui
  • Article |

    Advanced rechargeable lithium-ion batteries have potential applications in the renewable energy and sustainable road transport fields. Junget al. have developed a lithium battery that uses pre-existing concepts but has highly competitive energy densities, life span and cycling properties.

    • Hun-Gi Jung
    • , Min Woo Jang
    •  & Bruno Scrosati
  • Article |

    The ability to control the charge and spin of single molecules at metal interfaces underpins the concept of molecular electronics. Mugarzaet al. examine these properties using scanning tunnelling microscopy, and uncover their influence on the magnetism and transport properties of the molecule/metal systems.

    • Aitor Mugarza
    • , Cornelius Krull
    •  & Pietro Gambardella
  • Article
    | Open Access

    High-power mechanical energy harvesting could be an alternative to batteries, but efficient energy conversion technology has been missing. Here, a novel mechanical-to-electrical energy conversion method is described that is based on reverse electrowetting and is uniquely suited for high-power energy harvesting.

    • Tom Krupenkin
    •  & J. Ashley Taylor
  • Article
    | Open Access

    Magnesium is an ideal rechargeable battery anode material, but coupling it with a low-cost sulphur cathode, requires a non-nucleophilic electrolyte. Kimet al. prepare a non-nucleophilic electrolyte from hexamethyldisilazide magnesium chloride and aluminium trichloride, and show its compatibility with a sulphur cathode.

    • Hee Soo Kim
    • , Timothy S. Arthur
    •  & John Muldoon
  • Article
    | Open Access

    Interacting electrons in one dimension are predicted to have independent spin and charge excitations. Wakehamet al. show evidence of this behaviour in a bulk conductor by measuring a ratio of thermal to electrical conductivity orders of magnitude larger than in conventional three-dimensional metals.

    • Nicholas Wakeham
    • , Alimamy F. Bangura
    •  & Nigel E. Hussey
  • Article |

    Lithium–sulphur batteries may achieve higher energy densities than conventional lithium-ion cells, but the dissolution of sulphur intermediates is a continuing challenge. Here this problem is overcome using a cathode with a mesoporous structure that is able to accommodate intermediate polysulphide anions.

    • Xiulei Ji
    • , Scott Evers
    •  & Linda F. Nazar
  • Article |

    Oxygen diffusion processes are critical for the catalytic action of manganites but a full understanding of these processes is elusive. The authors perform atomic resolution scanning tunnelling microscopy imaging of layered manganites and show oxygen and defect dynamics on these surfaces.

    • B. Bryant
    • , Ch. Renner
    •  & G. Aeppli
  • Article |

    The construction of porous solids from discrete organic molecules usually involves the formation of regular porous crystals. In this study, a covalent scrambling reaction gives molecules with a range of shapes that do not pack effectively — manipulation of the reagent ratio allows fine control of porosity.

    • Shan Jiang
    • , James T. A. Jones
    •  & Andrew I. Cooper
  • Article |

    One challenge in the development of proton exchange fuel cells is the requirement for durable, high-conductivity electrolytes. The authors show that incorporating ionic liquids into synthetic block co-polymer electrolytes results in nanostructured membranes with much higher conductivities than currently available.

    • Sung Yeon Kim
    • , Suhan Kim
    •  & Moon Jeong Park
  • Article |

    Miniaturizing fuel cells for biological applications is challenging due to poor performance at these small scales. Now Gao and coworkers show that electrodes made with porous microfibers composed of oriented carbon nanotubes are capable of delivering fast mass transport of the reagents and greatly enhanced currents.

    • Feng Gao
    • , Lucie Viry
    •  & Nicolas Mano