Glasses

  • Article
    | Open Access

    Strain glass is a new glassy state characterized by frozen ferroelastic nanodomains. Here, the authors discover a low-temperature feature in the specific heat of a strain glass, which is similar to the well-known boson peak anomaly of structural glasses, but cannot be explained by existing mechanisms.

    • Shuai Ren
    • , Hong-Xiang Zong
    •  & Wei-Hua Wang
  • Article
    | Open Access

    The inverse design of the material for given target property is challenging for glasses due to their disordered non-prototypical structure. Wang and Zhang propose a data-driven property oriented inverse approach for design of glassy materials with desired functionalities.

    • Qi Wang
    •  & Longfei Zhang
  • Article
    | Open Access

    Glass is indispensable but its processing options are limited. Here the authors extend origami techniques to shaping three-dimensional transparent glass by introducing physical cavitation and chemical dynamic bond exchange in the pre-glass polymer-silica nanocomposites.

    • Yang Xu
    • , Ye Li
    •  & Tao Xie
  • Article
    | Open Access

    The reduction in thermal conductivity is usually achieved by increasing the scattering rate or localization of heat carriers. Here, the authors propose a mechanism to suppress the thermal transport in amorphous systems such as SiTe binary alloys via tailoring the cross-linking network between the atoms.

    • Kiumars Aryana
    • , Derek A. Stewart
    •  & Patrick E. Hopkins
  • Article
    | Open Access

    The competition between the formation of different phases and their kinetics need to be clearly understood to make materials with on-demand and multifaceted properties. Here, the authors reveal, by a combination of complementary in situ techniques, the mechanism of a Cu-Zr-Al metallic glass’s high propensity for metastable phase formation, which is partially through a kinetic mechanism of Al partitioning.

    • Jiri Orava
    • , Shanoob Balachandran
    •  & Ivan Kaban
  • Article
    | Open Access

    Fragmentation of breaking glass as a brittle solid is a problem of equal practical and theoretical importance. Kooij et al. demonstrate that the fragment size distribution can surprisingly be both, either power-law or exponential, depending on how a particular specimen is broken.

    • Stefan Kooij
    • , Gerard van Dalen
    •  & Daniel Bonn
  • Article
    | Open Access

    The static and dynamic behavior of condensed phases residing on curved surfaces can be fundamentally different from their counterparts in Euclidean space. Singh et al. test several competing glass theories on colloidal liquids confined to the surface of a sphere and show they behave like 3D bulk liquids.

    • Navneet Singh
    • , A. K. Sood
    •  & Rajesh Ganapathy
  • Article
    | Open Access

    Glass materials are solid, like crystals, but lack long-range order, whilst the origin of their solidity remains elusive. Tong et al. show that the emergent solidity of glasses is induced by self-organization of percolation of force-bearing network appeared at the non-equilibrium glass transition upon cooling.

    • Hua Tong
    • , Shiladitya Sengupta
    •  & Hajime Tanaka
  • Article
    | Open Access

    Supercooled liquids near the glass transition show remarkable non-Arrhenius transport phenomena, whose origin is yet to be clarified. Here, the authors use GPU molecular dynamics simulations for various binary mixtures in the supercooled regime to show the validity of a quasiuniversal excess-entropy scaling relation for viscosity and diffusion.

    • Ian H. Bell
    • , Jeppe C. Dyre
    •  & Trond S. Ingebrigtsen
  • Article
    | Open Access

    Metal-organic framework glasses are gaining interest, but large samples are difficult to fabricate and mechanical properties are not well understood. Here, the authors use experiments and simulations to assess fracture toughness and flexural strength of a zeolitic imidazolate framework glass.

    • Theany To
    • , Søren S. Sørensen
    •  & Morten M. Smedskjaer
  • Article
    | Open Access

    The glass transition temperature (Tg) is a key property that dictates the applicability of conjugated polymers. Here the authors use one adjustable parameter to build a relationship between the Tg and the molecular structure of semiflexible polymers that differ in aromatic backbone and alkyl side chain chemistry.

    • Renxuan Xie
    • , Albree R. Weisen
    •  & Enrique D. Gomez
  • Article
    | Open Access

    While metallic glasses are expected to have tunable structures, these have rarely been demonstrated. Here, the authors combine temperature and pressure to show a two-way structural tuning in rare earth-based metallic glasses beyond the nearest-neighbor atomic shells.

    • Hongbo Lou
    • , Zhidan Zeng
    •  & Qiaoshi Zeng
  • Article
    | Open Access

    Glass transition in soft materials can be affected by the topology of constituent particles, but the detail remains elusive. Here, Smrek et al. show that the interplay between circular topology of ring polymers and their active segments generates a new state of matter, namely active topological glass.

    • Jan Smrek
    • , Iurii Chubak
    •  & Kurt Kremer
  • Article
    | Open Access

    The glass-forming materials exhibit dynamical slowing down together with spatial heterogeneity at microscales, but their origin remains debated. Tong and Tanaka show that this phenomenon can be unified based on a structural order parameter capable of detecting subtle ordering in instantaneous liquid states.

    • Hua Tong
    •  & Hajime Tanaka
  • Article
    | Open Access

    The coarsening of amorphous metallic nanoparticles remains poorly understood. Here, the authors combine high resolution microscopy and atomistic simulations to show the disordered structure of amorphous nanoparticles makes them coarsen faster than crystalline ones.

    • Yuan Tian
    • , Wei Jiao
    •  & Mingwei Chen
  • Article
    | Open Access

    The nature of the defects in amorphous materials, analogous to vacancies and dislocations in crystals, remains a matter of debate. Scalliet et al. show that localized and extended defects coexist in a wide range of conditions, yet are associated with distinct energy scales in a prototypical glass model.

    • Camille Scalliet
    • , Ludovic Berthier
    •  & Francesco Zamponi
  • Article
    | Open Access

    Thermal annealing of metallic glasses is known to cause a universal increase of the relaxation time with sample age. Here, however, the authors show how a mechanical stress disrupts this universal response, leading to highly non-monotonous structural dynamics with time.

    • Amlan Das
    • , Peter M. Derlet
    •  & Robert Maaß
  • Article
    | Open Access

    The formation of composite materials has been widely exploited to alter the chemical and physical properties of their components. Here the authors form metal–organic framework (MOF) crystal–glass composites in which a MOF glass matrix stabilises the open pore structure of MIL-53, leading to enhanced CO2 adsorption.

    • Jingwei Hou
    • , Christopher W. Ashling
    •  & Thomas D. Bennett
  • Article
    | Open Access

    Identifying the nature of the glass transition is challenging because relevant experiments or analytical descriptions are hard to achieve. Here, Berthier et al. develop a Monte Carlo numerical tool to investigate two-dimensional glasses and find a zero-temperature thermodynamic glass transition.

    • Ludovic Berthier
    • , Patrick Charbonneau
    •  & Sho Yaida
  • Article
    | Open Access

    Conventional crystal growth models assume crystals grow into a structure-less liquid, even though liquid metals have shown evidence of structural ordering. Here, the authors show crystal growth can be influenced by the presence of thermodynamically unstable local structural order in the liquid.

    • Yujun Xie
    • , Sungwoo Sohn
    •  & Judy J. Cha
  • Article
    | Open Access

    Fluids may avoid crystallization via an underlying mechanism that remains hotly debated. Teich et al. show that hard polyhedral particles form glass because of the competition of local structural motifs, each of which is prevalent in crystals self-assembled from particles of closely related shapes.

    • Erin G. Teich
    • , Greg van Anders
    •  & Sharon C. Glotzer
  • Article
    | Open Access

    Metal–organic framework glasses have emerged as a new family of melt-quenched glass, but have yet to display the accessible porosity of their crystalline counterparts. Here, Bennett and colleagues report that glasses derived from ZIF-76 parent materials possess 4 – 8 Å pores and exhibit reversible gas adsorption.

    • Chao Zhou
    • , Louis Longley
    •  & Thomas D. Bennett
  • Article
    | Open Access

    Metallic glasses deform along nanoscale shear bands, and while it is known that they affect the neighboring glass regions, exactly how is unclear. Here, the authors use magnetic force microscopy to atomically resolve the shear-band affected zone and show its effects extends much further than previously thought.

    • L. Q. Shen
    • , P. Luo
    •  & W. H. Wang
  • Article
    | Open Access

    Understanding the fracture toughness of metallic glasses remains challenging. Here, the authors show that a fictive temperature controls an abrupt mechanical toughening transition in metallic glasses, and can explain the scatter in previously reported fracture toughness data.

    • Jittisa Ketkaew
    • , Wen Chen
    •  & Jan Schroers
  • Article
    | Open Access

    It is a general consensus that the structural defects are the plasticity carriers in amorphous solids, but its microscopic view remains largely unknown. Cao et a. show that highly distorted coplanar tetrahedra act as defects in granular packings, which flip under shear to carry local plasticity.

    • Yixin Cao
    • , Jindong Li
    •  & Yujie Wang
  • Article
    | Open Access

    The recently introduced glass and liquid states of metal–organic frameworks (MOFs) provide opportunities to design and explore new properties for this class of material. Here, the authors show that a MOF liquid can be blended with another MOF component to produce domain-structured MOF glasses with single, tailorable glass transitions.

    • Louis Longley
    • , Sean M. Collins
    •  & Thomas D. Bennett
  • Article
    | Open Access

    Deciphering the dissolution process of silicate glasses and minerals from atomic to macroscopic scales is a major challenge. Here, the authors explain the passivating properties of the gel layer by its reorganization, which is a key mechanism accounting for very low apparent water diffusivity.

    • Stéphane Gin
    • , Marie Collin
    •  & Jincheng Du
  • Article
    | Open Access

    Producing ultrastable metallic glasses has always been associated with substrates heated close to the glass transition temperature. Here, the authors show that reducing the deposition rate of the metallic glass on a cold substrate produces ultrastable metallic glasses with remarkably improved stability.

    • P. Luo
    • , C. R. Cao
    •  & W. H. Wang
  • Article
    | Open Access

    Iron-based bulk metallic glasses are remarkably plastic, but the origin of their plasticity remains challenging to isolate. Here, the authors use high resolution microscopy to show that nanocrystals are dispersed within the glass and form hard and soft zones that are responsible for enhancing ductility.

    • Baran Sarac
    • , Yurii P. Ivanov
    •  & Jürgen Eckert
  • Article
    | Open Access

    Glass forming liquids near the glass transition exhibit spatially heterogeneous dynamics, but it remains challenging to study their dynamics and structural origin on an atomic scale. Zhang et al. visualize liquid dynamics at a sub-nanometer and millisecond resolution using electron correlation microscopy.

    • Pei Zhang
    • , Jason J. Maldonis
    •  & Paul M. Voyles
  • Article
    | Open Access

    Deforming metallic glasses can rejuvenate them to higher energy states, but only in the shear bands where deformation is usually concentrated. Here, the authors use a notched setup to suppress shear banding and promote significant bulk softening of a zirconium-based metallic glass.

    • J. Pan
    • , Y. X. Wang
    •  & Y. Li
  • Article
    | Open Access

    Displacive martensitic transformations through lattice distortion usually involve a change from one crystal structure to another. Here however, the authors “melt” metastable Ti alloys during cooling and show that a martensitic transformation can lead to the formation of an intragranular amorphous phase.

    • Long Zhang
    • , Haifeng Zhang
    •  & Simon Pauly
  • Article
    | Open Access

    Crystallising a bulk metallic glass usually results in separate phases. Here, the authors use metallic glass nanorods to show that as the sample size approaches the nucleation scale lengths, the crystallization behavior is dictated by the lack of nuclei and nanorods crystallise into a single phase.

    • Sungwoo Sohn
    • , Yujun Xie
    •  & Judy J. Cha
  • Article
    | Open Access

    River beds often exhibit armouring, in which formation of a coarse surface layer shields the finer underlying grains from erosion. Here, using experiments in a laboratory river and discrete and continuum models, the authors demonstrate that river-bed armouring is driven by vertical granular segregation.

    • Behrooz Ferdowsi
    • , Carlos P. Ortiz
    •  & Douglas J. Jerolmack
  • Article
    | Open Access

    Organic—inorganic glasses can possess unique properties and functionalities, but their poor mechanical strength and stiffness typically limit their applicability. Here the authors demonstrate that inducing hyperconnectivity into silicon-based glass networks endows them with exceptional elastic stiffness.

    • Joseph A. Burg
    • , Mark S. Oliver
    •  & Reinhold H. Dauskardt
  • Article
    | Open Access

    Vapor deposition can produce ultrastable glasses similar to conventional glasses aged over thousands of years. Here authors study deposition growth kinetics of a two-dimensional colloidal glass and report relatively frequent occurrence of large and anisotropic regions of cooperative rearrangements at intermediate depths from the surface.

    • Xin Cao
    • , Huijun Zhang
    •  & Yilong Han
  • Article
    | Open Access

    Diamond’s properties are dictated by its crystalline, fully tetrahedrally bonded structure. Here authors synthesize a bulk sp 3-bonded amorphous form of carbon under high pressure and temperature, show that it has bulk modulus comparable to crystalline diamond and that it can be recovered under ambient conditions.

    • Zhidan Zeng
    • , Liuxiang Yang
    •  & Ho-kwang Mao