Geochemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    Martian dust is globally enriched in S and Cl and has a distinct mean S:Cl ratio. Here the authors identify that the largest potential source region for Martian dust based on analysis of elemental abundance data may be the Medusae Fossae Formation.

    • Lujendra Ojha
    • , Kevin Lewis
    •  & Mariek Schmidt
  • Article
    | Open Access

    Mélange rocks are predicted to form at the slab-mantle interface in most subduction zones, but their role in arc magmatism is still debated. Here, the authors show that melting of peridotite hybridized by mélange rocks produces melts that carry the major and trace element abundances of natural arc magmas.

    • E. A. Codillo
    • , V. Le Roux
    •  & H. R. Marschall
  • Article
    | Open Access

    Rivers and streams are important sources of carbon dioxide and methane; however, the drivers of these streambed gas fluxes are poorly understood. Here, the authors show that temperature sensitivity of streambed greenhouse gas emissions varies with substrate, organic matter content and geological origin.

    • Sophie A. Comer-Warner
    • , Paul Romeijn
    •  & Stefan Krause
  • Article
    | Open Access

    Volatile contents in melt inclusions can be used to unravel magma migration and degassing. Here, the authors use olivine chronometry and melt inclusion data from the 2008 Llaima eruption and find that magma intrusion occurred 4 years before the eruption and reached a depth of 3–4 km, 6 months before the eruption.

    • Dawn C. S. Ruth
    • , Fidel Costa
    •  & Eliza S. Calder
  • Article
    | Open Access

    The late Ediacaran to early Cambrian interval witnessed extraordinary radiations of metazoan life, in which the role of physical environment remains debated. Here, Wang et al. show that increased nutrient nitrogen availability may have exerted an important control on both macroevolution and ocean oxygenation.

    • Dan Wang
    • , Hong-Fei Ling
    •  & Graham A. Shields
  • Article
    | Open Access

    The Great Oxidation Event (GOE) is considered to have occurred at 2.33–2.32 Ga based on the last occurrence of MIF-S in South Africa. Here, based on sulphur isotope analysis of samples from Western Australia, the authors show preservation of MIF-S beyond 2.31 Ga and call for a re-evaluation of GOE timing.

    • Pascal Philippot
    • , Janaína N. Ávila
    •  & Vincent Busigny
  • Article
    | Open Access

    Groundwater resources are coming under increasing pressure leading to water quality loss. Here, the authors find that recent groundwater pumping has led to increasing arsenic concentrations in the San Joaquin Valley, California aquifers from arsenic residing in the pore water of clay strata released by overpumping.

    • Ryan Smith
    • , Rosemary Knight
    •  & Scott Fendorf
  • Article
    | Open Access

    There is still much debate on early Earth geochemical conditions affecting the chemistry of simple synthons that originated life. Here, the authors report an uninterrupted multistep synthetic route to 2-aminooxazole by means of flow chemistry equipment, mimicking a plausible early Earth (geo)chemical scenario.

    • Dougal J. Ritson
    • , Claudio Battilocchio
    •  & John D. Sutherland
  • Article
    | Open Access

    Fluid-mediated mineral dissolution is a key mechanism for mineral reactions in the Earth. Here, the authors show that element transport during mineral dissolution and reprecipitation reactions can be mediated by an amorphous phase, which can contain significant amounts of metals.

    • Matthias Konrad-Schmolke
    • , Ralf Halama
    •  & Franziska D. H. Wilke
  • Article
    | Open Access

    Although trace compounds are known to inhibit crystal growth, the mechanisms by which they do so are unclear. Here, the authors use a microkinetic model to study the mechanisms of several inhibitors of calcite growth, finding that the processes are quite different for inorganic and organic inhibitors.

    • S. Dobberschütz
    • , M. R. Nielsen
    •  & M. P. Andersson
  • Article
    | Open Access

    Ore deposits and nuclear reactors are greatly affected by the solubility and speciation of uranium at elevated (>100 °C) temperature. Here, the authors identify a new uranium chloride species (UCl40), which is mobile under reducing conditions, thereby necessitating a re-evaluation of uranium mobility.

    • Alexander Timofeev
    • , Artaches A. Migdisov
    •  & Hongwu Xu
  • Article
    | Open Access

    Uncertainty regarding the evolution of the oxygen isotopic composition of seawater casts doubt on past temperature reconstructions. Here, the authors present a new, precise δ18O value for the Neoproterozoic, and propose that ocean temperatures on the eve of the Sturtian glaciation were 15–30 °C warmer than present.

    • F. Hodel
    • , M. Macouin
    •  & P. Agrinier
  • Article
    | Open Access

    The origin of iron oxide-apatite deposits remains enigmatic and controversial. Here, the authors perform experiments on intermediate magmas and show that increasing aH2O and fO2 enlarges the two-liquid field thus allowing the Fe–Ca–P melt to separate easily from host silicic magma and produce iron oxide-apatite ores.

    • Tong Hou
    • , Bernard Charlier
    •  & Olivier Namur
  • Article
    | Open Access

    Multiple complex tectonic and climatic processes have formed the Andes, which today provides a unique ecological niche. Here, Scott et al. investigate how the chemical composition of lavas from stratovolcanoes can be used to give insight on the uplift of the Andes over the last 200 million years.

    • Erin M. Scott
    • , Mark B. Allen
    •  & Mihai N. Ducea
  • Article
    | Open Access

    The Sun’s light stable isotopes compositions can help us understand how our solar system formed. Here, the authors find that solar C is depleted relative to bulk Earth indicating that the 13C enrichment of the terrestrial planets is from CO self-shielding or inheritance from the parent cloud.

    • James R. Lyons
    • , Ehsan Gharib-Nezhad
    •  & Thomas R. Ayres
  • Article
    | Open Access

    The contribution of surface processes to the long-term evolution of plateau surfaces on high-latitude passive margins is poorly understood. Here, the authors show that recent glacial erosion on plateaus in western Scandinavia was widespread and may have contributed substantially to the sediment flux to the oceans.

    • Jane L. Andersen
    • , David L. Egholm
    •  & Sheng Xu
  • Article
    | Open Access

    The concentration of Ni and Cr of the continental crust cannot be explained by formation models involving differentiated magmatic rocks. Here, the authors show that hydrothermal alteration and chemical weathering of ultramafic rock compensates for the low Ni and Cr concentrations of island arc-type magmatic rocks.

    • Andreas Beinlich
    • , Håkon Austrheim
    •  & Andrew Putnis
  • Article
    | Open Access

    Some basaltic melts become first superheated upon their ascent towards the Earth’s surface and then saturated in chromite alone after cooling in shallow chambers. Here the authors show that large volumes of these chromite-only-saturated melts are responsible for monomineralic layers of massive chromitites in layered intrusions.

    • Rais Latypov
    • , Gelu Costin
    •  & Tony Naldrett
  • Article
    | Open Access

    Crystals can record the timing of volcanic eruptive triggers at depth by examining their zoning histories. Here, the authors analyse clinopyroxene crystal zoning from eruptions at Mount Etna, Italy from 1974-2014 and show that the intrusion of magma can trigger an eruption within 2 weeks of arrival.

    • Teresa Ubide
    •  & Balz S. Kamber
  • Article
    | Open Access

    Methane seepage from continental slopes has been attributed to gas hydrate dissociation induced by anthropogenic bottom water warming. Here, the authors show that hydrates dissociated before the Anthropocene when the isostatic rebound induced by deglaciation of the Arctic ice sheet outpaced eustatic sea-level rise.

    • Klaus Wallmann
    • , M. Riedel
    •  & G. Bohrmann
  • Article
    | Open Access

    Solid organic matter (OM) plays a key role in the production of hydrocarbons in shale formations, yet information on OM heterogeneity at a nanoscale is lacking. Here, the authors use atomic force microscopy-based infrared spectroscopy to document the evolution of individual organic macerals with maturation.

    • Jing Yang
    • , Javin Hatcherian
    •  & Andrew E. Pomerantz
  • Article
    | Open Access

    The supercontinent Rodinia has been hypothesised to have formed in a different manner from other supercontinents. Here, the authors report geochemical and mineralogical evidence for prevalence of non-arc magmatism and enhanced erosion of volcanic arcs and orogens during Rodinian assembly.

    • Chao Liu
    • , Andrew H. Knoll
    •  & Robert M. Hazen
  • Article
    | Open Access

    Peridotite carbonation plays an important role in the carbon cycle. Here, the authors present a geophysical characterization of serpentinite carbonation from km to mm scale and confirm that the abundance of magnetic minerals provides a strong correlation with the overall carbonation reaction process.

    • Masako Tominaga
    • , Andreas Beinlich
    •  & Yumiko Harigane
  • Article
    | Open Access

    The chromium (Cr) isotope system has emerged as a potential proxy for tracing Earth’s atmospheric evolution based on a redox-dependent framework. Here the authors show that ligand-complexation, a redox-independent process, must be considered when using Cr isotope signatures to diagnose atmospheric oxygen levels.

    • Emily M. Saad
    • , Xiangli Wang
    •  & Yuanzhi Tang
  • Article
    | Open Access

    The question of how significant barite deposits were able to form from early Earth’s low-sulfate seas remains controversial. Here, the authors show pelagic barite precipitation within a strongly barite-undersaturated ecosystem, highlighting the importance of particle-associated microenvironments.

    • Tristan J. Horner
    • , Helena V. Pryer
    •  & Richard D. Ricketts
  • Article
    | Open Access

    Snowball Earth glaciations were some of the most extreme climate events in Earth history, and are temporally linked to major biogeochemical changes. Here, using geochemical proxies, the authors show that during the Marinoan glaciation, there was likely open water, active oxygen production, and nitrogen cycling.

    • Benjamin W. Johnson
    • , Simon W. Poulton
    •  & Colin Goldblatt
  • Article
    | Open Access

    In the Gale Crater on Mars, organic matter has been detected, but in much lower concentrations than expected. Here, the authors conduct clay mineral synthesis experiments which suggest that clay minerals may rapidly form under oxidized conditions and thus explain the low organic concentrations in Gale Crater.

    • Seth R. Gainey
    • , Elisabeth M. Hausrath
    •  & Courtney L. Bartlett
  • Article
    | Open Access

    Despite dramatic changes in carbon sinks, severe Snowball Earth glaciations have not occurred since the Cryogenian. Here, via the measurement of global subduction zone lengths and carbon cycle modelling, the authors show that a two fold increase in volcanic CO2 input likely thwarted global glaciation.

    • Benjamin J. W. Mills
    • , Christopher R. Scotese
    •  & Timothy M. Lenton
  • Article
    | Open Access

    Sulphate-rich sediments have been taken as evidence of surface water on Mars. Here, the authors show that cryo-concentrated brines chemically weather olivine minerals forming sulfate minerals at up to −60 °C, showing that cryogenic weathering and sulfate formation can occur under current Martian conditions.

    • Paul B. Niles
    • , Joseph Michalski
    •  & D. C. Golden
  • Article
    | Open Access

    Dating of inclusions within diamonds is used to reconstruct Earth’s geodynamic history. Here, the authors report isotope data on individual garnet inclusions within diamonds from Venetia, South Africa, showing that two suites of diamonds define two isochrons, showing the importance of dating individual inclusions.

    • Janne M. Koornneef
    • , Michael U. Gress
    •  & Gareth R. Davies
  • Article
    | Open Access

    Current estimates of dissolved CO2 in subduction-zone fluids based on thermodynamic models rely on a very sparse experimental data base. Here, the authors show that experimental graphite-saturated COH fluids interacting with silicates at 1–3 GPa and 800 °C display unpredictably high CO2 contents.

    • S. Tumiati
    • , C. Tiraboschi
    •  & S. Poli
  • Article
    | Open Access

    Most molecular scale knowledge on soil organo–mineral interactions remains qualitative due to instrument limitations. Here, the authors use force spectroscopy to directly measure free binding energy between organic ligands and minerals and find that both chemistry and environmental conditions affect binding.

    • C. J. Newcomb
    • , N. P. Qafoku
    •  & J. J. De Yoreo
  • Article
    | Open Access

    Identifying the original impactor from craters remains challenging. Here, the authors use chromium and oxygen isotopes to indicate that the Zhamanshin astrobleme impactor was a carbonaceous chrondrite by demonstrating that depleted 17O values are due to exchange with atmospheric oxygen.

    • Tomáš Magna
    • , Karel Žák
    •  & Zdeněk Řanda
  • Article
    | Open Access

    Serpentinization of mantle rocks occurs in a variety of tectonic settings, but the controls on the rates of serpentinization are poorly constrained. Here, the authors developed anin situexperimental method to show that the rate of serpentinization is strongly controlled by the salinity of the reacting fluid.

    • Hector M. Lamadrid
    • , J. Donald Rimstidt
    •  & Robert J. Bodnar
  • Article
    | Open Access

    Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

    • Henrik Drake
    • , Magnus Ivarsson
    •  & Mats E. Åström
  • Article
    | Open Access

    The response of soil organic carbon in wetlands to water-table decline remains uncertain. Here, the authors examine the role of iron in mediating soil enzyme activity and lignin stabilization and find that iron protecting lignin phenols in soils exposed to air acts as an iron gate against the enzyme latch.

    • Yiyun Wang
    • , Hao Wang
    •  & Xiaojuan Feng
  • Article
    | Open Access

    Carbon migration in the deep Earth is still not fully understood. Here, the authors show that immiscible isobutane formsin situfrom transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa, indicating that hydrocarbon fluids may play a major role in carbon transfer in the deep carbon cycle.

    • Fang Huang
    • , Isabelle Daniel
    •  & Dimitri A. Sverjensky
  • Article
    | Open Access

    Ion exchange at charged mineral-water interfaces is an important geochemical process, but a molecular-level understanding is still required. Here, the authors probe real-time variations of the interfacial ion exchange dynamics at the muscovite-water interface, providing a general picture of adsorbed ion coverage and speciation.

    • Sang Soo Lee
    • , Paul Fenter
    •  & Neil C. Sturchio
  • Article
    | Open Access

    Crystalline uraninite is believed to be the dominant form in uranium deposits. Here, the authors find that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV)species in ore deposits, implying that biogenic processes are more important than previously thought.

    • Amrita Bhattacharyya
    • , Kate M. Campbell
    •  & Thomas Borch
  • Article
    | Open Access

    The cause of the end-Triassic extinction remains controversial. Here, the authors present U-Pb age data showing that magmatic activity occurred 100 kyr before the earliest known eruptions, which links to changes in climate and biotic records indicating the importance of understanding the intrusive record.

    • J.H.F.L. Davies
    • , A. Marzoli
    •  & U. Schaltegger
  • Article
    | Open Access

    Constraining the timing of crustal processes and impact events remains challenging. Here, the authors show that atom probe tomography can produce highly accurate U-Pb isotopic age constraints in baddeleyite crystals, which is a common phase in terrestrial, Martian, Lunar and asteroidal materials.

    • L. F. White
    • , J. R. Darling
    •  & I. Martin
  • Article
    | Open Access

    The influence of tectonics, continental weathering, and seafloor weathering in the geological carbon cycle remain unclear. Here, the authors develop a new carbon cycle model and, through comparison with proxy data, critically evaluate the influence of these components on carbon fluxes since 100 Ma.

    • Joshua Krissansen-Totton
    •  & David C. Catling