Electrical and electronic engineering articles within Nature Communications

Featured

  • Article
    | Open Access

    The thermal stability impedes the application of nanoscale magnetic tunnel junctions in electronic and spintronics devices. Here the authors achieved current-induced magnetization switching in magnetic tunnel junctions smaller than 10 nm with sufficient thermal stability due to the shape anisotropy without adding new material systems.

    • K. Watanabe
    • , B. Jinnai
    •  & H. Ohno
  • Article
    | Open Access

    The development of humanoid robots with artificial intelligence calls for smart solutions for tactile sensing systems that respond to dynamic changes in the environment. Here, Yoon et al. emulate non-adaption and sensitization function of a nociceptor—a sensory neuron—using diffusive oxide-based memristors.

    • Jung Ho Yoon
    • , Zhongrui Wang
    •  & J. Joshua Yang
  • Article
    | Open Access

    DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations.

    • Youngjun Song
    • , Sejung Kim
    •  & Xiaohua Huang
  • Article
    | Open Access

    Electronic skins have been developed to emulate human sensory systems, but simultaneous detection of multiple stimuli remains a big challenge due to coupling of electronic signals. Here, Hua et al. overcome this problem in a stretchable and conformable matrix network integrated with seven different modes.

    • Qilin Hua
    • , Junlu Sun
    •  & Zhong Lin Wang
  • Article
    | Open Access

    Unidirectional spin Hall magnetoresistance enables the new spintronic devices but is limited by the low amplitude or working temperature. Here, the authors report the large unidirectional spin Hall magnetoresistance in a topological insulator and ferromagnetic metal bilayer system at relatively higher temperature.

    • Yang Lv
    • , James Kally
    •  & Jian-Ping Wang
  • Article
    | Open Access

    Reservoir computing facilitates the projection of temporal input signals onto a high-dimensional feature space via a dynamic system, known as the reservoir. Du et al. realise this concept using metal-oxide-based memristors with short-term memory to perform digit recognition tasks and solve non-linear problems.

    • Chao Du
    • , Fuxi Cai
    •  & Wei D. Lu
  • Article
    | Open Access

    Oxide-based memristors hold promise for artificial neuromorphic computing, yet the detail of the switching mechanism—filament formation—remains largely unknown. Hoskins et al. provide nanoscale imaging of this process using electron beam induced current microscopy and relate it to resistive states.

    • Brian D. Hoskins
    • , Gina C. Adam
    •  & Jabez J. McClelland
  • Article
    | Open Access

    Hemispherical format has been adopted in camera systems to better mimic human eyes, yet the current designs rely on complicated fabrications. Here, Zhang et al. show an origami-inspired approach that enables planar silicon-based photodetector arrays to reshape into concave or convex geometries.

    • Kan Zhang
    • , Yei Hwan Jung
    •  & Zhenqiang Ma
  • Article
    | Open Access

    Organic materials that support both electronic and ionic transport hold promise for applications in bioelectronics and energy storage. Here, Inal et al. use transistors to quantify the materials performance of organic mixed conductors in terms of the product of charge mobility and volumetric capacitance.

    • Sahika Inal
    • , George G. Malliaras
    •  & Jonathan Rivnay
  • Article
    | Open Access

    Micro-electromechanical systems fabrication techniques are based on silicon micromachining processes, resulting in rigid and low aspect ratio structures. Here the authors demonstrate a flexible, high aspect ratio micro-electromechanical system in fibre enabled by an electrostrictive ferrorelaxor terpolymer layer.

    • Tural Khudiyev
    • , Jefferson Clayton
    •  & Yoel Fink
  • Article
    | Open Access

    The signalling scheme used in access networks require electrical bandwidths many times greater than subscribers can utilise. Here, the authors describe a promising approach to achieve bidirectional transmission with bandwidth-efficient yet low-complexity coherent optical network unit transceiver.

    • M. S. Erkılınç
    • , D. Lavery
    •  & P. Bayvel
  • Article
    | Open Access

    Memristors can switch between high and low electrical-resistance states, but the switching behaviour can be unpredictable. Here, the authors harness this unpredictability to develop a memristor-based true random number generator that uses the stochastic delay time of threshold switching

    • Hao Jiang
    • , Daniel Belkin
    •  & Qiangfei Xia
  • Article
    | Open Access

    Optical non-reciprocity achieved through refractive index modulation can have its challenges and limitations. Here, Dinc et al. introduce the concept of non-reciprocity based on synchronized spatio-temporal modulation of conductivity to achieve different types of non-reciprocal functionality.

    • Tolga Dinc
    • , Mykhailo Tymchenko
    •  & Harish Krishnaswamy
  • Article
    | Open Access

    There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

    • Jianjun Ma
    • , Nicholas J. Karl
    •  & Daniel M. Mittleman
  • Article
    | Open Access

    Flexible flash memory is crucial to modern electronics, but its fabrication is challenging in the absence of suitable dielectric materials. Here, Lee et al. realize organic memory with retention over 10 years using tunneling and blocking dielectric layers prepared by initiated chemical vapor deposition.

    • Seungwon Lee
    • , Hyejeong Seong
    •  & Seunghyup Yoo
  • Article
    | Open Access

    Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

    • Nithin Mathews
    • , Anders Lyhne Christensen
    •  & Marco Dorigo
  • Article
    | Open Access

    Controlling all the optical properties of dielectric waveguides is a challenging task and often requires complicated core- and cladding designs. Here, Jiang et al. demonstrate that a thin metasurface coating can control several optical properties simultaneously over a broad frequency range.

    • Zhi Hao Jiang
    • , Lei Kang
    •  & Douglas H. Werner
  • Article
    | Open Access

    The miniaturization of antennas beyond a wavelength is limited by designs which rely on electromagnetic resonances. Here, Nan et al. have developed acoustically actuated antennas that couple the acoustic resonance of the antenna with the electromagnetic wave, reducing the antenna footprint by up to 100.

    • Tianxiang Nan
    • , Hwaider Lin
    •  & Nian Xiang Sun
  • Article
    | Open Access

    Realizing metasurfaces with reconfigurability, high efficiency, and control over phase and amplitude is a challenge. Here, Li et al. introduce a reprogrammable hologram based on a 1-bit coding metasurface, where the state of each unit cell of the coding metasurface can be switched electrically.

    • Lianlin Li
    • , Tie Jun Cui
    •  & Shuang Zhang
  • Article
    | Open Access

    Ion migration in perovskite solar cells are known to cause hysteresis and instability. Biet al., report a charge extraction layer based on graphene, fullerenes and carbon quantum dots which suppresses ion diffusion and enhances charge carrier diffusion leading to efficient devices with improved stability.

    • Enbing Bi
    • , Han Chen
    •  & Liyuan Han
  • Article
    | Open Access

    Organic non-volatile memories based on ferroelectric and semiconductor polymers are one of promising candidates for flexible electronics, yet the relevant device physics remains elusive. Ghittorelliet al. show that quantum tunnelling and charge accumulation govern the ferroelectric memory operation.

    • Matteo Ghittorelli
    • , Thomas Lenz
    •  & Fabrizio Torricelli
  • Article
    | Open Access

    Memristors are key structural units of complex memory and computing systems, yet most currently available memristors are based on materials that are not compatible with silicon technology. Here, the authors demonstrate a CMOS-compatible, self-rectifying memristor and arrays entirely based on p-Si/SiO2/n-Si.

    • Can Li
    • , Lili Han
    •  & Qiangfei Xia
  • Article
    | Open Access

    Global regulation of synaptic strengths in neural systems is known as homeoplasticity. Here, Gkoupideniset al. use an electrolyte to connect and control an array of organic electrochemical devices, in order to demonstrate behaviour that resembles homeoplasticity phenomena in the brain.

    • Paschalis Gkoupidenis
    • , Dimitrios A. Koutsouras
    •  & George G. Malliaras
  • Article
    | Open Access

    Using chips that mimic the human brain to perform cognitive tasks, namely neuromorphic computing, calls for low power and high efficiency hardware. Here, Yaoet al. show on-chip analogue weight storage by integrating non-volatile resistive memory into a CMOS platform and test it in facial recognition.

    • Peng Yao
    • , Huaqiang Wu
    •  & He Qian
  • Article
    | Open Access

    Photonic lanterns are made by merging several single-mode cores into one multimode core. Here, the authors show this type of structure can both perform wavelength-to-time mapping of multimode states of light and couple such light to an array of single-photon avalanche detectors.

    • Harikumar K Chandrasekharan
    • , Frauke Izdebski
    •  & Robert R. Thomson
  • Article
    | Open Access

    Carbon nanotube yarns with high loadings of pseudocapacitive material are desirable, e.g., for emerging wearable technologies. Here authors make biscrolled yarns with high loadings of MnO2nanoparticles confined in carbon nanotube galleries, demonstrating very high linear and areal capacitances.

    • Changsoon Choi
    • , Kang Min Kim
    •  & Seon Jeong Kim
  • Article
    | Open Access

    The development of organic electronics calls for low-cost printing techniques that can prepare high quality, large-area organic single crystals. Here, Rigaset al. achieve this goal by combining spray printing and antisolvent crystallization and test the method on various materials and substrates.

    • Grigorios-Panagiotis Rigas
    • , Marcia M. Payne
    •  & Maxim Shkunov
  • Article
    | Open Access

    By forming heterostructures of different layered two-dimensional materials, functional spintronic devices may be built by exploiting the materials’ different spin-orbit coupling and spin transport properties. Here, the authors demonstrate a spin switch in a gated structure of graphene and MoS2.

    • Wenjing Yan
    • , Oihana Txoperena
    •  & Fèlix Casanova
  • Article
    | Open Access

    Electronic devices based on negative differential resistance hold promise for multi-valued logic applications. Here, the authors implement such functionalities using an atomically thin phosphorene/rhenium disulfide van der Waals heterostructure, and further demonstrate the implementation of a ternary inverter.

    • Jaewoo Shim
    • , Seyong Oh
    •  & Jin-Hong Park
  • Article
    | Open Access

    Most microelectronic devices today exploit the electronic properties of semiconductors. Here, the authors demonstrate a microelectronic device for free-space electrons by using the enhanced fields in a microstructured metal surface to induce effective photoemission.

    • Ebrahim Forati
    • , Tyler J. Dill
    •  & Dan Sievenpiper
  • Article
    | Open Access

    Scalable quantum information processing requires controllable high-coherence qubits. Here, the authors present superconducting flux qubits with broad frequency tunability, strong anharmonicity and high reproducibility, identifying photon shot noise as the main source of dephasing for further improvements.

    • Fei Yan
    • , Simon Gustavsson
    •  & William D. Oliver
  • Article
    | Open Access

    Molecular electronics holds promise to overcome scaling limits of conventional technologies, but is currently limited to low frequency operation. Here, Trasobares et al. show radio frequencies of up to 17.8 GHz in a molecular diode based on ferrocenyl undecanethiol self-assembled monolayers on gold nanodots.

    • J. Trasobares
    • , D. Vuillaume
    •  & N. Clément
  • Article
    | Open Access

    Moving particles on a vibrating plate dates back to 1780s, but it is still challenging to control individual particles in a parallel way. Here, Zhou et al. use a single acoustic actuator and an algorithm to control multiple objects simultaneously and independently for sorting and pattern formation.

    • Quan Zhou
    • , Veikko Sariola
    •  & Ville Liimatainen
  • Article
    | Open Access

    Imaging buried interfaces is necessary to assess the quality of electronic devices and their degradation mechanisms. Here, Hirohata et al. use energy-filtered scanning electron microscopy to image buried defects in an inorganic lateral spin-valve device, at the nanometre scale and non-destructively.

    • Atsufumi Hirohata
    • , Yasuaki Yamamoto
    •  & Andrew J. Vick
  • Article
    | Open Access

    Resistive switching in metal oxides is related to the migration of donor defects. Here Baeumer et al. use in operandoX-ray spectromicroscopy to quantify the doping locally and show that small local variations in the donor concentration result in large variations in the device resistance.

    • Christoph Baeumer
    • , Christoph Schmitz
    •  & Regina Dittmann
  • Article
    | Open Access

    The control over the motion and deformation of liquid droplets is essential to many microfluidic and actuation systems. Zavabeti et al. demonstrate that applying a pH or ionic gradient across a droplet of liquid metal alloy of gallium results in its motion due to a breaking of the surface charge symmetry.

    • Ali Zavabeti
    • , Torben Daeneke
    •  & Kourosh Kalantar-zadeh
  • Article
    | Open Access

    Recently, negative pressure has been observed in perovskite nanowires by annealing the wires from a lower-density phase. Here, the authors show that the negative pressure enhances the piezoelectric coefficient of PbTiO3 and Pb(Zr,Ti)O3 nanowires experimentally and by ab initiocalculations.

    • Alexander Kvasov
    • , Leo J. McGilly
    •  & Nava Setter
  • Article
    | Open Access

    Thermoelectric materials with enhanced performances need to be identified. Here, the authors use the crystal field splitting energy of orbitals as a descriptor to design thermoelectric materials by solid solution maps and strain engineering in layered CaAl2Si2-type Zintl compounds.

    • Jiawei Zhang
    • , Lirong Song
    •  & Bo B. Iversen
  • Article
    | Open Access

    Flexible energy storage systems usually have limited energy densities. Here the authors report a flexible lithium–oxygen battery with the cathode consisting of titanium dioxide nanowire arrays grown on carbon textiles, which displays high mechanical strength as well as promising electrochemical performance.

    • Qing-Chao Liu
    • , Ji-Jing Xu
    •  & Xin-Bo Zhang