Carbon nanotubes and fullerenes articles within Nature Communications

Featured

  • Article |

    Reproducing complex surface geometries for high-performance composite materials is very desirable, although current synthesis methods are limited. Here, the authors present a technique to produce large-area freeform microstructures via strain-engineered growth of patterned vertically aligned carbon nanotubes.

    • M. De Volder
    • , S. Park
    •  & A. J. Hart
  • Article |

    There is strong interest in carbon nanotube assemblies for a variety of applications, many of which require combined high mechanical and electrical properties. Here, the authors demonstrate a rolling technique for performance improvement, reporting tensile strength of 4.34 GPa, ductility of 10% and electrical conductivity of 2.0 × 104 S cm−1.

    • J. N. Wang
    • , X. G. Luo
    •  & Y. Chen
  • Article |

    Artificial muscles composed of carbon nanotube yarns have previously demonstrated fast, large-angle rotations. Here, the authors infiltrate carbon nanotube yarns with a paraffin wax and polystyrene-based copolymer mixture, achieving stable 9,800 r.p.m. rotation without apparent oscillation.

    • Kyoung-Yong Chun
    • , Shi Hyeong Kim
    •  & Seon Jeong Kim
  • Article |

    Despite their high thermal conductivities, the large thermal interface resistance between carbon nanotubes and other components limits their practical applications. Here, the authors show that covalently bonded bridging molecules can significantly enhance the thermal transport across these interfaces.

    • Sumanjeet Kaur
    • , Nachiket Raravikar
    •  & D. Frank Ogletree
  • Article
    | Open Access

    Nanopore sensors are a promising tool for the controlled detection of a range of possible substrates. Here the authors describe a nanopore sensor based on short single-walled carbon nanotubes inserted into a lipid bilayer, with modified sensing properties compared to longer nanotubes.

    • Lei Liu
    • , Chun Yang
    •  & Hai-Chen Wu
  • Article |

    Carbon nanotube mechanical resonators are able to bend by a large amount through static strain. Here, the authors study how the bending breaks the symmetry of the restoring potential, and how the potential nonlinearity can lead to an apparent quality factor that is less than 100 at room temperature.

    • A. Eichler
    • , J. Moser
    •  & A. Bachtold
  • Article
    | Open Access

    Carbon nanotubes can be considered as rolled-up small sheets of graphene. Here Lim and colleagues demonstrate this process, by fabricating carbon nanotubes through a thermally induced process of self-intertwining of graphene nanoribbons.

    • Hong En Lim
    • , Yasumitsu Miyata
    •  & Hisanori Shinohara
  • Article
    | Open Access

    The use of spider silk in electronic devices is dependent on its compatibility with electrically conductive materials. Here the authors modify spider silk with carbon nanotubes to produce a strong, flexible and electrically conductive thread.

    • Eden Steven
    • , Wasan R. Saleh
    •  & James S. Brooks
  • Article
    | Open Access

    The incorporation of electronic circuits into various plastic products and devices is limited by the brittle nature of silicon wafers. Here, Sun et al.demonstrate flexible and high-performance all-carbon-based transistor circuits that can be thermo-moulded into various shapes.

    • Dong-Ming Sun
    • , Marina Y. Timmermans
    •  & Yutaka Ohno
  • Article |

    Bulk heterojunctions based on semiconducting polymers blended with fullerenes are promising for organic solar cells. Liet al.show that an additional light exposure step during fabrication increases their thermal stability and can lead to enhanced device performance.

    • Zhe Li
    • , Him Cheng Wong
    •  & João T. Cabral
  • Article
    | Open Access

    Elemental sulphur is an insulator in the bulk phase, although it may become conducting under ultrahigh-pressure conditions. Here, the authors report a one-dimensional conducting form of sulphur formed by encapsulation inside single-walled and double-walled carbon nanotubes.

    • Toshihiko Fujimori
    • , Aarón Morelos-Gómez
    •  & Katsumi Kaneko
  • Article |

    Large spin-orbit coupling in solids has the potential to yield materials that can display unique properties such as non-trivial topological ordering. Steele et al.report an order of magnitude higher zero-field spin splitting in carbon than has been measured previously.

    • G.A. Steele
    • , F. Pei
    •  & L.P. Kouwenhoven
  • Article |

    Double-walled carbon nanotubes are a convenient system for studying quantum mechanical interactions in distinct but coupled nanostructures. Liu et al.characterize the coupling between radial-breathing mode oscillations of inner and outer walls of many double-walled nanotubes of different diameter and chirality.

    • Kaihui Liu
    • , Xiaoping Hong
    •  & Feng Wang
  • Article |

    Graphene and single-walled carbon nanotubes have high electrical conductivities and large specific surface areas. Here, these properties are extended into three dimensions by producing a seamless carbon nanotube graphene hybrid material.

    • Yu Zhu
    • , Lei Li
    •  & James M. Tour
  • Article |

    The formation mechanisms of fullerenes remain unclear. This study shows that fullerenes self-assemble through a closed network growth mechanism in which atomic carbon and C2are incorporated into the growing closed cages.

    • Paul W. Dunk
    • , Nathan K. Kaiser
    •  & Harold W. Kroto
  • Article |

    Imaging and tracking the motion of single molecules on cell plasma membranes requires high spatial resolution in three dimensions. Honget al. develop a plasmonic ruler based on the fluorescence enhancement of carbon nanotubes on a gold plasmonic substrate, allowing the observation of nanotube endocytosis in three dimensions.

    • Guosong Hong
    • , Justin Z. Wu
    •  & Hongjie Dai
  • Article
    | Open Access

    Field-effect transistors fabricated from carbon nanotubes have been investigated extensively over the past two decades. This study demonstrates a nanotube-based integrated circuit design that substantially improves the speed and power consumption with respect to silicon-based integrated circuits.

    • Li Ding
    • , Zhiyong Zhang
    •  & Lian-Mao Peng
  • Article |

    Hoop-shaped aromatic hydrocarbons can be considered as finite models of single-wall carbon nanotubes. Hitosugiet al. describe the bottom-up synthesis of a macrocyclic tetramer of chrysene, and show that its persistent rotational isomers are finite models of chiral nanotubes.

    • Shunpei Hitosugi
    • , Waka Nakanishi
    •  & Hiroyuki Isobe
  • Article |

    Composites of carbon nanotubes and superconductors provide technologically important new, or improved, functionalities. Here, with a chemical solution approach, well-aligned carbon nanotube forests embedded in a superconducting NbC matrix are shown to effectively enhance the superconducting properties of NbC.

    • G.F. Zou
    • , H.M. Luo
    •  & Q.X. Jia
  • Article
    | Open Access

    Chemical manipulation of fullerenes has allowed the production of heptagon-containing fullerenes, but they have not been synthesised using bottom-up approaches. Here, a heptagon-containing fullerene[68] is obtained as C68Cl6from a carbon arc plasma.

    • Yuan-Zhi Tan
    • , Rui-Ting Chen
    •  & Lan-Sun Zheng
  • Article |

    Single-molecule magnets could be useful for the development of spintronic devices. Here single-molecule magnets are encapsulated in carbon nanotubes without affecting the properties of the guest molecules, which may be useful in the development of spintronic or high-density magnetic storage devices.

    • Maria del Carmen Giménez-López
    • , Fabrizio Moro
    •  & Andrei N. Khlobystov
  • Article |

    Covalent reactions on carbon nanotube surfaces typically occur at random positions on the hexagonal lattice. Denget al. show that Billups–Birch reductive alkylation takes place at, and propagates from, sp3defect sites, leading to confinement of the reaction fronts in the tubular direction.

    • Shunliu Deng
    • , Yin Zhang
    •  & YuHuang Wang