Review in 2023

Filter By:

Article Type
Year
  • In this review, we show that reversibility of charge storage occurs in polymers with bistable redox-active groups populated in the repeat units of a nonconjugated backbone, especially when an electron self-exchange reaction spreads throughout the polymer. We will also show that extending the idea of electron exchange to electron/proton exchange leads to reversible hydrogen storage based on the bistability of hydrogenated and dehydrogenated states and the equilibrium for hydrogenation.

    • Kenichi Oyaizu
    Review
  • In this review article, an overview of recent studies on heat-responsive and photoresponsive adhesive materials and the characteristics of other external stimuli used for dismantlable adhesive systems are described. Then, research on dismantlable adhesive materials using polyperoxides is introduced as an example of early material design. Next, the development of a dual-stimuli responsive dismantlable adhesive material is interpreted as a material design for achieving stability during use and degradability during dismantling. Finally, recent studies on heat-responsive, dismantlable adhesive materials, which are thermally stable during use while responding quickly during disassembly by heating, are described.

    • Akikazu Matsumoto
    Review
  • Crystalline porous molecular frameworks formed through intermolecular hydrogen bonding calling hydrogen-bonded organic frameworks (HOFs) have recently been investigated as a new family of functional porous materials. In this review, HOFs composed of tritopic, tetratopic, and hexatopic carboxylic acid derivatives, which form H-bonded network such as those with hcb, sql, and hxl topologies depending on the numbers, positions, and orientations of the carboxy groups and conformational flexibility of the molecular skeletons, are reviewed by considering structural aspects such as isostructurality.

    • Yuto Suzuki
    • Ichiro Hisaki
    ReviewOpen Access
  • A newly discovered nanostructure (island-nanomatrix structure) is introduced based on previous studies on the structure of natural rubber. Effects of the proteins and phospholipids that form the nanomatrix on the mechanical properties of natural rubber are described using a model island-nanomatrix structure of natural rubber. Furthermore, a synthetic cis-1,4-polyisoprene with island-nanomatrix structure is prepared; its mechanical properties are similar to those of natural rubber.

    • Seiichi Kawahara
    Review