Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Discovery of island-nanomatrix structure in natural rubber

Abstract

Natural rubber is a naturally occurring nanocomposite with an island-nanomatrix structure. It is composed of cis-1,4-polyisoprene particles with an average diameter of ~1 μm dispersed in a nanomatrix (several tens of nanometers thick) of nonrubber components such as proteins and phospholipids. The island-nanomatrix structure is stabilized by physical and chemical pinning with proteins and phospholipids that is based on the fact that cis-1,4-polyisoprene of natural rubber is a branched polymer. In this paper, the effects of the island-nanomatrix structure on the mechanical properties of natural rubber are demonstrated with experimental results. Essential facts are described. First, the island-nanomatrix structure disappears, and the mechanical properties of natural rubber decrease, as proteins are removed from rubber. Second, the mechanical properties are recoverable to the original level when the island-nanomatrix structure reforms in natural rubber after protein is removed. Third, the outstanding mechanical properties of natural rubber are attributed to a ten-fold increase in the modulus of cis-1,4-polyisoprene present as a bound rubber in the nanomatrix. Fourth, the effects of the nanomatrix structure on the mechanical properties are confirmed by forming the island-nanomatrix structure in synthetic cis-1,4-polyisoprene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Kawahara S. Rubber, natural. In: Encyclopedia of polymer science and technology. New York: John Wiley & Sons, Inc.; 2023.

  2. Kawahara S, Chaikumpollert O, Akabori K, Yamamoto Y. Morphology and properties of natural rubber with nanomatrix of non-rubber components. Polym Adv Technol. 2011;22:2665–7.

    CAS  Google Scholar 

  3. Kawahara S, Nishioka H, Yamano M, Yamamoto Y. Synthetic rubber with the tensile strength of natural rubber. ACS Appl Polym Mater 2022;4:2323–8.

    CAS  Google Scholar 

  4. Kosugi K, Kawahara S. Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid Polym Sci 2015;293:135–41.

    CAS  Google Scholar 

  5. Kroschwitz JI. Concise encyclopedia of polymer science and engineering. New York: John Wiley & Sons; 1990.

  6. Furuta I, Kimura SI, Iwama M. Physical contents of rubbery polymers. In: Brundrup J, Immergut EH, Grulke EA, editors. Polymer handbook. 4th ed. Vol. 1. New York: John Wiley & Sons; 1999. p. V/1-7.

  7. Yamashita S. Natural rubber. In: Horie K, Sanui K, editors. Kobunshi Jiten. 3rd edn. The Society of Polymer Science, Japan. Tokyo: Asakura Shoten; 2005. p. 417.

  8. Ikeda Y. Gomu no Kagaku. In: Okuyama M, Kohjiya S, Nishi T, Yamaguchi K, editors. Gomu no Jiten. Tokyo: Asakura Shoten; 2000. p. 21–38.

  9. Cyr DRS. Rubber, natural. In: Grayson M, Eckroth D, editors. Kirk-Othmer encyclopedia of chemical technology. 3rd ed. Vol. 20. Tokyo: John Wiley & Sons; 1976. p. 468–91.

  10. Cyr DRS. Rubber, natural. In: Mark HF, Bikales NM, Overberger CG, Manges G, Kroschwits JI, editors. Encyclopedia of polymer science and technology. Vol.14. New York: John Wiley & Sons; 1988. p. 687–716.

  11. Wypych G. Handbook of polymers. 2nd ed. Toronto: ChemTech Publishing; 2016.

  12. Takenaka K. Microstructure (synthetic rubber). In Division report, Division13 Polymer. The Chemical Society of Japan; 2014. https://division.csj.jp/div-report/13/1310702.pdf.

  13. Kaita S, Doi Y, Kaneko K, Horiuchi AC, Wakatsuki Y. An efficient Gadolinium metallocene-based catalyst for the synthesis of isoprene rubber with perfect 1,4-cis microstructure and marked reactivity difference between Lanthanide metallocenes toward dienes as probed by butadiene-isoprene copolymerization catalysis. Macromolecules. 2004;37:5860–2.

    CAS  Google Scholar 

  14. Faraday M. On Pure Caoutchouc, and the substances by which it is accompanied in the State of Sap, or Juice. Q J Sci. 1826;21:19–28.

    Google Scholar 

  15. Williams CG. IV. On isoprene and caoutchine. Proc R Soc London. 1860;10:516–9.

  16. Tilden WA. XLVI. On the decomposition of terpenes by heat. J Chem Soc. 1884;47:411.

    Google Scholar 

  17. Staudinger H. Über polymerisation. Ber Dtsch Chem Ges. 1920;53:1073–8.

    Google Scholar 

  18. Katz JR. Rontenspektrographische Untersuchungen am gedehnten Kautschuk und ihremogliche Bedeutung fur das Problem fer Dehnungseigenschaften dieser Substanz. Naturwissenschaften. 1925;19:410–6.

    Google Scholar 

  19. Eng AH, Kawahara S, Tanaka Y. Trans-isoprene units in natural rubber. Rubber Chem Technol. 1994;67:159–68.

    CAS  Google Scholar 

  20. Tanaka Y. Structural characterization of naturally occurring cis- and trans- isoprenes by 13C-NMR spectroscopy. J Appl Polym Sci Appl Polym Symp. 1989;44:1–9.

    CAS  Google Scholar 

  21. Tanaka Y, Kawahara S, Tangpakdee J. Structural characterization of natural rubber. Kautsch Gummi Kunst. 1997;50:6–10.

    CAS  Google Scholar 

  22. Blackley DC. Polymer latices: science and technology. London 2nd Ed. London; New York : Chapman & Hall, 1997.

  23. Cornish K, Wood DF, Windle JJ. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta. 1999;210:85–96.

    CAS  PubMed  Google Scholar 

  24. Berthelot K, Lecomte S, Estevez Y, Coulary-Salin B, Bentaleb A, Cullin C, et al. Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties. PLoS ONE. 2008;7:e48065.

    Google Scholar 

  25. Nawamawat K, Sakdapipanich J, Ho CC, Ma Y, Song J, Vancso GJ. Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf Physicochem Eng Asp. 2011;390:157–66.

    CAS  Google Scholar 

  26. Rochette CN, Crassous JJ, Drechsler M, Gaboriaud F, Eloy M, de Gaudemaris B, et al. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM. Langmuir. 2013;29:14655–65.

    CAS  PubMed  Google Scholar 

  27. Chaikumpollert O, Yamamoto Y, Suchiva K, Phan TN, Kawahara S. Preparation and characterization of protein-free natural rubber. Polym Adv Technol. 2012;23:825–8.

    CAS  Google Scholar 

  28. Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S. Colloid. Polym Sci. 2012;290:331–8.

    CAS  Google Scholar 

  29. Olabishi O, Robeson LM, Shaw MT. Polymer-polymer miscibility. New York: Academic Press; 1979.

  30. Nghiem TT, Yamamoto Y, Phan TN, Kawahara S. Analysis of damage in commercial natural rubber through NMR spectroscopy. Polym Degrad Stab. 2016;123:155–61.

    Google Scholar 

  31. Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y. Characterization of fatty acids linked to natural rubber—role of linked fatty acids on crystallization of the rubber. Polymer. 2000;41:7483–8.

  32. Zhou YB, Kosugi K, Yamamoto Y, Kawahara S. Effect of non-rubber components on the mechanical properties of natural rubber. Polym Adv Technol. 2017;28:159–65.

    CAS  Google Scholar 

  33. Kawahara S, Tanak Y. Plasticization and crystallization of cis-1,4 polyisoprene mixed with methyl linoleate. J Polym Sci Polym Phys Ed. 1995;33:753–8.

    CAS  Google Scholar 

  34. Angulo-Sanchez JL, Carallero-Mata P. Long chain branching in natural hevea rubber-determination by gel permeation chromatography. Rubber Chem Technol. 1981;54:34–41.

    CAS  Google Scholar 

  35. Fuller KNG, Fullton WS. The influence of molecular weight distribution and branching on the relaxation behaviour of uncrosslinked natural rubber. Polymer. 1990;31:609–15.

    CAS  Google Scholar 

  36. Kawahara S, Sakdapipanich JT, Isono Y, Eng AH, Tanaka Y. Effect of gel on the green strength of natural rubber. Rubber Chem Technol. 2002;75:739–46.

  37. Subramaniam A. Gel permeation chromatography of natural rubber. Rubber Chem Technol. 1972;45:346–58.

    CAS  Google Scholar 

  38. Eng AH, Ejiri S, Kawahara S, Tanaka Y. Structural characteristics of natural rubber: role of ester groups. J Appl Polym Sci Appl Polym Symp. 1994;53:5–14.

    Google Scholar 

  39. Tangpakdee J, Tanaka Y. Branching in natural rubber. J Rubber Res. 1998;1:14–21.

    CAS  Google Scholar 

  40. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. New York: John Wiley & Sons; 1993.

  41. Gent AN, Mars WV. Strength of elastomers. In: Erman B, Mark JE, Roland CM, editors. The science and technology of rubber. 4th ed. Oxford: Academic Press; 2013. p. 473–516.

  42. Takayanagi M, Uemura S, Minami S. Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci C Polym Symp. 1964;5:113–22.

    Google Scholar 

  43. Guth E, Gold O. On the hydrodynamical theory of the viscosity of suspensions. Phys Rev. 1938;53:322–5.

    CAS  Google Scholar 

  44. Guth E. Theory of filler reinforcement. J Appl Phys. 1945;16:20.

    CAS  Google Scholar 

  45. Kawahara S, Kawazura T, Sawada T, Isono Y. Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer. 2003;44:4527–31.

    CAS  Google Scholar 

  46. Kawahara S, Yusof NH, Noguchi K, Kosugi K, Yamamoto Y. Organic-inorganic nanomatrix structure and properties of related naturally occurring rubbery macromolecules. Polymer. 2014;55:5024–7.

    CAS  Google Scholar 

  47. Gannoruwa A, Sumita M, Kawahara K. Highly enhanced mechanical properties in natural rubber prepared with a nanodiamond nanomatrix structure. Polymer. 2017;126:40–7.

    CAS  Google Scholar 

  48. Pukkate N, Kitai T, Yamamoto Y, Kawazura T, Sakdapipanich JT, Kawahara S. Nano-matrix structure formed by graft-copolymerization of styrene onto natural rubber. Eur Polym J. 2007;43:3208–14.

    CAS  Google Scholar 

  49. Kawahara S, Yamamoto Y, Fujii S, Isono Y, Niihara K, Jinnai H, et al. FIB-SEM and TEMT observation of highly elastic rubbery material with nano-matrix structure. Macromolecules. 2008;41:4510–3.

    CAS  Google Scholar 

  50. Akabori K, Yamamoto Y, Kawahara S, Jinnai H, Nishioka H. Field emission scanning electron microscopy combined with focused ion beam for rubbery material with nano-matrix structure. J Phys Conf Ser. 2009;184:012027.

    Google Scholar 

  51. Fukuhara L, Kado N, Nghiem TT, Loykulnant S, Suchiva K, Kosugi K, et al. Nanomatrix structure formed by graft copolymerization of styrene onto fresh natural rubber. Rubber Chem Technol. 2015;88:117–24.

    CAS  Google Scholar 

  52. Fukuhara L, Kosugi K, Yamamoto Y, Jinnai H, Nishioka H, Ishii H, et al. FIB processing for natural rubber with nanomatrix structure. Polymer. 2015;57:143–9.

    CAS  Google Scholar 

  53. Fukuhara L, Kosugi K, Yamamoto Y, Jinnai H, Nishioka H, Ishii H, et al. Frozen non-equilibrium structure for anisotropically deformed natural nubber with nanomatrix structure observed by 3D FIB-SEM and TEMT techniques. Colloid Polym Sci. 2015;293:2555–63.

    CAS  Google Scholar 

  54. Yamamoto Y, Sawada T, Kawahara S. Graft-copolymerization of acrylonitrile onto surfaces of natural rubber particles using deproteinized natural rubber latex. Kobunshi Ronbunshu. 2007;64:155–60.

    CAS  Google Scholar 

  55. Prukkaewkanjana K, Kawahara S, Sakdapipanich JT. Influence of reaction conditions on the properties of nano-matrix structure formed by graft-copolymerization of acrylonitrile onto natural rubber. Adv Mater Res. 2014;844:365–8.

    Google Scholar 

  56. Yusof NH, Song TK, Kosugi K, Kawahara S. Preparation and characterization of poly(stearyl methacrylate) grafted natural rubber in latex stage. Polymer. 2016;88:43–51.

    CAS  Google Scholar 

  57. Yamamoto Y, Suksawad P, Pukkate N, Horimai T, Wakisaka O, Kawahara S. Photoreactive nanomatrix structure formed by graft-copolymerization of 1,9-nonandiol dimethacrylate onto natural rubber. J Polym Sci Part A Polym Chem 2010;48:2418–24.

    CAS  Google Scholar 

  58. Yusof NH, Noguchi K, Fukuhara L, Yamamoto Y, Kawahara S. Preparation and properties of natural rubber with filler nanomatrix structure. Colloid Polym Sci. 2015;293:2249–56.

    CAS  Google Scholar 

  59. Nghiem TT, Phan TN, Kawahara S. Formation of an in situ nanosilica nanomatrix via graft copolymerization of vinyltriethoxysilane onto natural rubber. Polym Adv Technol. 2020;31:482–91.

    CAS  Google Scholar 

  60. Nghiem TT, Tran AD, Yusof NH, Kawahara S. Controlling the size of silica nanoparticles in filler nanomatrix structure of natural rubber. Polymer. 2020;195:122444.

    Google Scholar 

  61. Nghiem TT, Nguyen TN, Yusof NH, Kawahara S. Effect of naturally occurring proteins on graft copolymerization of vinyltriethoxysilane on natural rubber. Polym J. 2022;54:633–41.

    Google Scholar 

  62. Kawahara S, Suksawad P, Yamamoto Y, Kuroda H. Nanomatrix channel for ionic molecular transportation. Macromolecules. 2009;42:8557–60.

    Google Scholar 

  63. Suksawad P, Kosugi K, Yamamoto Y, Akabori K, Kuroda H, Kawahara S. Polymer electrolyte membrane with nanomatrix channel prepared by sulfonation of natural rubber grafted with polystyrene. J Appl Polym Sci. 2011;122:2403–14.

    CAS  Google Scholar 

  64. Kado N, Suksawad P, Akabori K, Yamamoto Y, Kawahara S. Fabrication of a completely continuous nanomatrix channel and its proton conductivity. Kautsch Gummi Kunst. 2012;65:26–9.

    CAS  Google Scholar 

  65. Fukuhara L, Kado N, Kosugi K, Suksawad P, Yamamoto Y, Ishii H, et al. Preparation of polymer electrolyte membrane with nanomatrix channel through sulfonation of natural rubber grafted with polystyrene. Solid State Ion. 2014;268:191–7.

    CAS  Google Scholar 

  66. Kosugi K, Sutthangkul R, Chaikumpollert O, Yamamoto Y, Sakdapipanich JT, Isono Y, et al. Preparation and characterization of natural rubber with soft nanomatrix structure. Colloid Polym Sci. 2012;290:1457–62.

    CAS  Google Scholar 

  67. Kosugi K, Arai H, Zhou YB, Kawahara S. Formation of organic–inorganic nanomatrix structure with nanosilica networks and its effect on properties of rubber. Polymer. 2016;102:106–11.

    CAS  Google Scholar 

  68. Nguyen TH, Do QV, Tran AD, Kawahara S. Preparation of hydrogenated natural rubber with nanomatrix structure. Polym Adv Technol. 2020;31:86–93.

    CAS  Google Scholar 

  69. Nguyen TH, Tran TT, Kawahara S, Ougizawa T. Preparation of polyaniline nanomatrix formed in natural rubber. Polym J. 2020;52:1357–65.

    CAS  Google Scholar 

  70. Nguyen TH, Vu HH, Nguyen HN, Phan TN, Ougizawa T, Kawahara S. Electrically conductive membrane based on epoxidized natural rubber-graft-polyaniline nanomatrix. Vietnam J Chem. 2021;59:580–4.

    Google Scholar 

  71. Nghiem TT, Yusof NH, Kawahara S. A polystyrene/silica hybrid nanomatrix formed in natural rubber. Polym J. 2023;55:631–7.

  72. Gannoruwa A, Sumita M, Kawahara S. Highly enhanced mechanical properties in natural rubber prepared with a nanodiamond nanomatrix structure. Polymer. 2017;126:40–7.

    CAS  Google Scholar 

  73. Gannoruwa A, Kawahara S. Distribution of nanodiamond inside the nanomatrix in natural rubber. Langmuir. 2018;34:6861–8.

    CAS  PubMed  Google Scholar 

  74. Kawahara S, Gannoruwa A, Nakajima K, Liang X, Akiba I, Yamamoto Y. Nanodiamond glass with rubber bond in natural rubber. Adv Funct Mater. 2020;30:1909791.

    CAS  Google Scholar 

  75. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7:11–23.

    CAS  Google Scholar 

  76. Gannoruwa A, Yamamoto Y, Zhou YB, Kawahara S. Origin of energetic elasticity and entropic elasticity. Rubber Chem Technol. 2021;94:704–19.

    CAS  Google Scholar 

  77. Hess WM, Ford FP. Microscopy of pigment-elastomer systems. Rubber Chem Technol. 1963;36:1175–229.

    CAS  Google Scholar 

  78. Kruse J. Rubber microscopy. Rubber Chem Technol. 1973;46:653–785.

    CAS  Google Scholar 

  79. Ban LL, Hess WM, Papazian LA. New studies of carbon-rubber gel. Rubber Chem Technol. 1974;47:858–94.

    Google Scholar 

  80. Fukahori Y. The mechanics and mechanism of the carbon black reinforcement of elastomers. Rubber Chem Technol. 2003;76:548–66.

    CAS  Google Scholar 

  81. Nakajima K, Ito M, Nguyen HK, Liang X. Nanomechanics of the rubber-filler interface. Rubber Chem Technol. 2017;90:272–84.

    CAS  Google Scholar 

  82. Yamamoto Y, Endo K, Tévenot Q, Kosugi K, Nakajima K, Kawahara S. Entropic and energetic elasticities of natural rubber with a nanomatrix structure. Langmuir. 2020;36:11341–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Kawahara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawahara, S. Discovery of island-nanomatrix structure in natural rubber. Polym J 55, 1007–1021 (2023). https://doi.org/10.1038/s41428-023-00797-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00797-2

This article is cited by

Search

Quick links