Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reversible and high-density energy storage with polymers populated with bistable redox sites

Abstract

Redox-active polymers with charging/discharging reversibility are employed to develop electrode-active materials in organic batteries, which are characterized by high power rates, flexibility/bendability, and environmentally benign properties. Reversible charge storage with polymers is achieved by redox “bistability” and exchange reactions. Redox bistability is a feature of electrochemical reversibility, which refers to the properties of redox pairs in which both the reduced and oxidized states are chemically robust and do not fade during substantial storage periods. The electron self-exchange reactions of the redox-active sites populated in the polymer layer give rise to charge propagation in support of exhaustive charging and discharging. The concept of charge storage reversibility is extended to hydrogen storage reversibility based on the bistability of the hydrogenation/dehydrogenation pair and the electron/proton exchange reaction, creating hydrogen carrier polymers as a new class of energy-related functional polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goujon N, Casado N, Patil N, Marcilla R, Mecerreyes D. Organic batteries based on just redox polymers. Prog Polym Sci. 2021;122:101449.

    Article  CAS  Google Scholar 

  2. Gracia R, Mecerreyes D. Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem. 2013;4:2206–14.

    Article  CAS  Google Scholar 

  3. Zhao Q, Zhu Z, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater. 2017;29:1607007.

    Article  Google Scholar 

  4. Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem Rev. 2020;120:6490–6557.

    Article  CAS  PubMed  Google Scholar 

  5. Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K. Organic batteries for a greener rechargeable world. Nat Rev Mater. 2023;8:54–70.

    Article  ADS  Google Scholar 

  6. Shea JJ, Luo C. Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces. 2020;12:5361–80.

    Article  CAS  PubMed  Google Scholar 

  7. Han C, Li H, Shi R, Zhang T, Tong J, Lia J, et al. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J Mater Chem A. 2019;7:23378–415.

    Article  CAS  Google Scholar 

  8. Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. A perspective on organic electrode materials and technologies for next generation batteries. J Power Sour. 2021;482:228814.

    Article  CAS  Google Scholar 

  9. Poizot P, Dolhem F, Gaubicher J. Progress in all-organic rechargeable batteries using cationic and anionic configurations: toward low-cost and greener storage solutions? Curr Opin Electrochem. 2018;9:70–80.

    Article  CAS  Google Scholar 

  10. Wu Y, Zeng R, Nan J, Shu D, Qiu Y, Chou SL. Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater. 2017;7:1700278.

    Article  Google Scholar 

  11. Gan X, Yang Z, Song Z. Solid-state batteries based on organic cathode materials. Batteries Supercaps 2023;6:e202300001.

  12. Song ZP, Zhou HS. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci. 2013;6:2280–301.

    Article  CAS  Google Scholar 

  13. Wang H, Wu Q, Cheng L, Zhu G. The emerging aqueous zinc-organic battery. Coord Chem Rev. 2022;472:214772.

    Article  CAS  Google Scholar 

  14. MacInnes Jr. D, Druy MA, Nigrey PJ, Nairns DP, MacDiarmid AG, Heeger AJ. Organic batteries: reversible n- and p- type electrochemical doping of polyacetylene, (CH)x. J Chem Soc Chem Commun. 1981; 317–19.

  15. Mike JF, Lutkenhaus JL. Electrochemically active polymers for electrochemical energy storage: opportunities and challenges. ACS Macro Lett. 2013;2:839–44.

    Article  CAS  PubMed  Google Scholar 

  16. Mike JF, Lutkenhaus JL. Recent advances in conjugated polymer energy storage. J Polym Sci B. 2013;51:468–80.

    Article  CAS  Google Scholar 

  17. Novák P, Müller K, Santhanam KSV, Haas O. Electrochemically active polymers for rechargeable batteries. Chem Rev. 1997;97:207–81.

    Article  PubMed  Google Scholar 

  18. Nishide H. Organic redox polymers as electrochemical energy materials. Green Chem. 2022;24:4650–79.

    Article  CAS  Google Scholar 

  19. Wang S, Easley AD, Lutkenhaus JL. 100th Anniversary of macromolecular science viewpoint: fundamentals for the future of macromolecular nitroxide radicals. ACS Macro Lett. 2020;9:358–70.

    Article  CAS  PubMed  Google Scholar 

  20. Janoschka T, Hager MD, Schubert US. Powering up the future: radical polymers for battery applications. Adv Mater. 2012;24:6397–409.

    Article  CAS  PubMed  Google Scholar 

  21. Tomlinson EP, Hay ME, Boudouris BW. Radical polymers and their application to organic electronic devices. Macromolecules. 2014;47:6145–58.

    Article  CAS  ADS  Google Scholar 

  22. Hatakeyama-Sato K, Oyaizu K. Redox: organic robust radicals and their polymers for energy conversion/storage devices. Chem Rev. 2023;123:11336–91.

    Article  CAS  PubMed  Google Scholar 

  23. Nishide H, Oyaizu K. Toward flexible batteries. Science. 2008;319:737–38.

    Article  CAS  PubMed  Google Scholar 

  24. Oyaizu K, Nishide H. Radical polymers for organic electronics: a radical departure from conjugated polymers? Adv Mater. 2009;21:2339–44.

    Article  CAS  Google Scholar 

  25. Nakahara K, Oyaizu K, Nishide H. Organic radical battery approaching practical use. Chem Lett. 2011;40:222–7.

    Article  CAS  Google Scholar 

  26. Xie Y, Zhang K, Yamauchi Y, Oyaizu K, Jia Z. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications. Mater Horiz. 2021;8:803–29.

    Article  CAS  PubMed  Google Scholar 

  27. Oyaizu K, Nishide H. Macromolecular complexes leading to high performance energy devices. Macromol Symp. 2012;317-318:248–58.

    Article  CAS  Google Scholar 

  28. Suga T, Pu YJ, Oyaizu K, Nishide H. Electron-transfer kinetics of nitroxide radicals as an electrode-active material. Bull Chem Soc Jpn. 2004;77:2203–4.

    Article  CAS  Google Scholar 

  29. Koshika K, Sano N, Oyaizu K, Nishide H. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chem Commun. 2009; 836–38.

  30. Koshika K, Sano N, Oyaizu K, Nishide H. An aqueous electrolyte-type rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol Chem Phys. 2009;210:1989–95.

    Article  CAS  Google Scholar 

  31. Koshika K, Chikushi N, Sano N, Oyaizu K, Nishide H. A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 2010;12:1573–75.

    Article  CAS  Google Scholar 

  32. Zhuang X, Xiao C, Oyaizu K, Chikushi N, Chen X, Nishide H. Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. J Polym Sci A. 2010;48:5404–10.

    Article  CAS  Google Scholar 

  33. Sano N, Tomita W, Hara S, Min CH, Lee JS, Oyaizu K, et al. Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device. ACS Appl Mater Interfaces. 2013;5:1355–61.

    Article  CAS  PubMed  Google Scholar 

  34. Sato K, Katagiri R, Chikushi N, Lee S, Oyaizu K, Lee JS, et al. Totally organic-based bendable rechargeable devices composed of hydrophilic redox polymers and aqueous electrolyte. Chem Lett. 2017;46:693–94.

    Article  CAS  Google Scholar 

  35. Nishide H, Koshika K, Oyaizu K. Environmentally benign batteries based on organic radical polymers. Pure Appl Chem. 2009;81:1961–70.

    Article  CAS  Google Scholar 

  36. Koshika K, Kitajima M, Oyaizu K, Nishide H. A rechargeable battery based on hydrophilic radical polymer-electrode and its green assessment. Green Chem Lett Rev. 2009;2:169–74.

    Article  CAS  Google Scholar 

  37. Zhuang X, Zhang H, Chikushi N, Zhao C, Oyaizu K, Chen X, et al. Biodegradable and electroactive tempo-substituted acrylamide/lactide copolymer. Macromol Biosci. 2010;10:1203–9.

    Article  CAS  PubMed  Google Scholar 

  38. Oyaizu K, Ando Y, Konishi H, Nishide H. Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J Am Chem Soc. 2008;130:14459–61.

    Article  CAS  PubMed  Google Scholar 

  39. Choi W, Ohtani S, Oyaizu K, Nishide H, Geckeler KE. Radical polymer-wrapped swnts at a molecular level: high-rate redox mediation through a percolation network for a transparent charge-storage material. Adv Mater. 2011;23:4440–3.

    Article  CAS  PubMed  Google Scholar 

  40. Gao H, Zhu Q, Neale AR, Bahri M, Wang X, Yang H, et al. Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance. Adv Energy Mater. 2021;11:2101880.

    Article  CAS  Google Scholar 

  41. Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed. 2018;57:9443–6.

    Article  CAS  Google Scholar 

  42. Wang A, Tan R, Breakwell C, Wei X, Fan Z, Ye C, et al. Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage. J Am Chem Soc. 2022;144:17198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma T, Li CH, Thakur RM, Tabor DP, Lutkenhaus JL. The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nat Mater. 2023;22:495–502.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Wang X, Dong H, Lakraychi AE, Zhang Y, Yang X, Zheng H, et al. Electrochemical swelling induced high material utilization of porous polymers in magnesium electrolytes. Mater Today. 2022;55:29–36.

    Article  CAS  Google Scholar 

  45. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–57.

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Oka K, Furukawa S, Murao S, Oka T, Nishide H, Oyaizu K. Poly(dihydroxybenzoquinone): its high-density and robust charge storage capability in rechargeable acidic polymer-air batteries. Chem Commun. 2020;56:4055–58.

    Article  CAS  Google Scholar 

  47. Choi W, Harada D, Oyaizu K, Nishide H. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J Am Chem Soc. 2011;133:19839–43.

    Article  CAS  PubMed  Google Scholar 

  48. Kawai T, Oyaizu K, Nishide H. High-density and robust charge storage with poly(anthraquinone-substituted norbornene) for organic electrode-active materials in polymer-air secondary batteries. Macromolecules. 2015;48:2429–34.

    Article  CAS  ADS  Google Scholar 

  49. Oyaizu K, Choi W, Nishide H. Functionalization of poly(4-chloromethylstyrene) with anthraquinone pendants for organic anode-active materials. Polym Adv Technol. 2011;22:1242–47.

    Article  CAS  Google Scholar 

  50. Sasada Y, Langford SJ, Oyaizu K, Nishide H. Poly(norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Adv. 2016;6:42911–16.

    Article  CAS  ADS  Google Scholar 

  51. Oyaizu K, Hatemata A, Choi W, Nishide H. Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J Mater Chem. 2010;20:5404–10.

    Article  CAS  Google Scholar 

  52. Kato F, Kikuchi A, Okuyama T, Oyaizu K, Nishide H. Nitroxide radical molecules as highly reactive redox mediators in dye-sensitized solar cells. Angew Chem Int Ed. 2012;124:10324–27.

    Article  ADS  Google Scholar 

  53. Kato F, Hayashi N, Murakami T, Okumura C, Oyaizu K, Nishide H. Nitroxide radicals for highly efficient redox mediation in dye-sensitized solar cells. Chem Lett. 2010;39:464–5.

    Article  CAS  Google Scholar 

  54. Oyama N, Tatsuma T, Sato T, Sotomura T. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density. Nature. 1995;373:598–600.

    Article  CAS  ADS  Google Scholar 

  55. Madec L, Bouvrée A, Blanchard P, Cougnon C, Brousse T, Lestriez B, et al. In situ redox functionalization of composite electrodes for high power-high energy electrochemical storage systems via a non-covalent approach. Energy Environ Sci. 2012;5:5379–86.

    Article  CAS  Google Scholar 

  56. Iwakura C, Kawai T, Nojima M, Yoneyama H. A new electrode‐active material for polymer batteries: polyvinylferrocene. J Electrochem Soc. 1987;134:791–4.

    Article  CAS  Google Scholar 

  57. Yonekuta Y, Oyaizu K, Nishide H. Structural implication of oxoammonium cations for reversible organic one-electron redox reaction to nitroxide radicals. Chem Lett. 2007;36:866–7.

    Article  CAS  Google Scholar 

  58. Yonekuta Y, Susuki K, Oyaizu K, Honda K, Nishide H. Battery-inspired non-volatile and rewritable memory architectures: a radical polymer-based organic device. J Am Chem Soc. 2007;129:14128–9.

    Article  CAS  PubMed  Google Scholar 

  59. Oyaizu K, Kawamoto T, Suga T, Nishide H. Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density. Macromolecules. 2010;43:10382–9.

    Article  CAS  ADS  Google Scholar 

  60. Suga T, Takeuchi S, Ozaki T, Sakata M, Oyaizu K, Nishide H. Synthesis of poly(oxoammonium salt)s and their electrical properties in the organic thin film device. Chem Lett. 2009;38:1160–61.

    Article  CAS  Google Scholar 

  61. Oyaizu K, Suga T, Yoshimura K, Nishide H. Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries. Macromolecules. 2008;41:6646–52.

    Article  CAS  ADS  Google Scholar 

  62. Takahashi Y, Hayashi N, Oyaizu K, Honda K, Nishide H. Totally organic polymer-based electrochromic cell using tempo-substituted polynorbornene as a counter electrode-active material. Polym J. 2008;40:763–7.

    Article  CAS  Google Scholar 

  63. Kato R, Kato F, Oyaizu K, Nishide H. Redox-active hydroxy-TEMPO radical immobilized in Nafion layer for an aqueous electrolyte-based and dye-sensitized solar cell. Chem Lett. 2014;43:480–2.

    Article  CAS  Google Scholar 

  64. Oyaizu K, Sukegawa T, Nishide H. Dual dopable poly(phenylacetylene) with nitronyl nitroxide pendants for reversible ambipolar charging and discharging. Chem Lett. 2011;40:184–5.

    Article  CAS  Google Scholar 

  65. Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H. P- and N-Type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv Mater. 2011;23:751–4.

    Article  CAS  PubMed  Google Scholar 

  66. Sukegawa T, Kai A, Oyaizu K, Nishide H. Synthesis of pendant nitronyl nitroxide radical-containing poly(norbornene)s as ambipolar electrode-active materials. Macromolecules. 2013;46:1361–7.

    Article  CAS  ADS  Google Scholar 

  67. Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Emerging n-type redox active radical polymer for a totally organic polymer-based rechargeable battery. Adv Mater. 2009;21:1627–30.

    Article  CAS  Google Scholar 

  68. Xiang J, Sato K, Tokue H, Oyaizu K, Ho CL, Nishide H, et al. Synthesis and charge-discharge properties of organometallic copolymers of ferrocene and triphenylamine as cathode active materials for organic-battery applications. Eur J Inorg Chem. 2016;2016:1030–5.

    Article  CAS  Google Scholar 

  69. Meng Z, Sato K, Sukegawa T, Oyaizu K, Ho CL, Xiang J, et al. Metallopolyyne polymers with ferrocenyl pendant ligands as cathode-active materials for organic battery application. J Organomet Chem. 2016;812:51–5.

    Article  CAS  Google Scholar 

  70. Maruo H, Tanaka S, Takamura M, Oyaizu K, Segawa H, Nishide H. Oxoammonium cation of TEMPO: a very efficient dopant for hole-transporting triaryl amines in a perovskite solar cell. MRS Commun. 2018;8:122–6.

    Article  CAS  Google Scholar 

  71. Wylie L, Kempt R, Heine T, Oyaizu K, Karton A, Yoshizawa-Fujita M, et al. Toward improved performance of all-organic nitroxide radical batteries with ionic liquids: a theoretical perspective. ACS Sustain Chem Eng. 2019;7:5367–75.

    Article  CAS  Google Scholar 

  72. Wylie L, Blesch T, Freeman R, Hatakeyama-Sato K, Oyaizu K, Yoshizawa-Fujita M, et al. Reversible reduction of the TEMPO radical: one step closer to an all-organic redox flow battery. ACS Sustain Chem Eng. 2020;8:17988–96.

    Article  CAS  Google Scholar 

  73. Wylie L, Hatakeyama-Sato K, Go C, Oyaizu K, Izgorodina E. Electrochemical characterization and thermodynamic analysis of TEMPO derivatives in ionic liquids. Phys Chem Chem Phys. 2021;23:10205–17.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang K, Xie Y, Noble BB, Monteiro MJ, Lutkenhaus JL, Oyaizu K, et al. Unraveling kinetics and mass transport effects on two-electron storage in radical polymer batteries. J Mater Chem A. 2021;9:13071–9.

    Article  CAS  Google Scholar 

  75. Maruo H, Oyaizu K, Nishide H. Electrochemical formation of a polyviologen-ZNO composite with an efficient charging capability. Chem Lett. 2015;44:393–5.

    Article  CAS  Google Scholar 

  76. Suzuka M, Hara S, Sekiguchi T, Oyaizu K, Nishide H. Polyviologen as the charge-storage electrode of an aqueous electrolyte- and organic-based dye-sensitized solar cell. Polymer. 2015;68:353–7.

    Article  CAS  Google Scholar 

  77. Hatakeyama-Sato K, Ichinoi R, Sasada Y, Sasaki Y, Oyaizu K, Nishide H. n-Type redox-active benzoylpyridinium-substituted supramolecular gel for an organogel-based rechargeable device. Chem Lett. 2019;48:555–7.

    Article  CAS  Google Scholar 

  78. Armand M, Grugeon S, Vesin H, Laruelle S, Ribière P, Poizot P, et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater. 2009;8:120–5.

    Article  CAS  PubMed  ADS  Google Scholar 

  79. Han X, Qing G, Sun J, Sun T. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew Chem Int Ed. 2012;51:5147–51.

    Article  CAS  Google Scholar 

  80. Renault S, Oltean VA, Araujo CM, Grigoriev A, Edström K, Brandell D. Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate. Chem Mater. 2006;28:1920–6.

    Article  Google Scholar 

  81. Yang H, Liu S, Cao L, Jiang S, Hou H. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J Mater Chem A. 2018;6:21216–24.

    Article  CAS  Google Scholar 

  82. Nakahara K, Oyaizu K, Nishide H. Electrolyte anion-assisted charge transportation in poly(oxoammonium cation/nitroxyl radical) redox gels. J Mater Chem. 2012;22:13669–73.

    Article  CAS  Google Scholar 

  83. Sasada Y, Ichinoi R, Oyaizu K, Nishide H. Supramolecular organic radical gels formed with 2,2,6,6-tetramethylpiperidin-1-oxyl-substituted cyclohexanediamines: a very efficient charge-transporting and -storable soft material. Chem Mater. 2017;29:5942–7.

    Article  CAS  Google Scholar 

  84. Hatakeyama-Sato K, Wakamatsu H, Matsumoto S, Sadakuni K, Matsuoka K, Nagatsuka T, et al. TEMPO-substituted poly(ethylene sulfide) for solid-state electrochemical charge storage. Macromol Rapid Commun. 2021;42:2000607.

    Article  CAS  Google Scholar 

  85. Hyakutake T, Park JY, Yonekuta Y, Oyaizu K, Nishide H, Advincula R. Nanolithographic patterning via electrochemical oxidation of stable poly(nitroxide radical)s to poly(oxoammonium salt)s. J Mater Chem. 2010;20:9616–8.

    Article  CAS  Google Scholar 

  86. Sukegawa T, Omata H, Masuko I, Oyaizu K, Nishide H. Anionic polymerization of 4-methacryloyloxy-TEMPO using an MMA-capped initiator. ACS Macro Lett. 2014;3:240–3.

    Article  CAS  PubMed  Google Scholar 

  87. Sato K, Sukegawa T, Oyaizu K, Nishide H. Synthesis of poly(TEMPO-substituted glycidyl ether) by utilizing t-BuOK/18-crown-6 for an organic cathode-active material. Macromol Symp. 2015;351:90–6.

    Article  CAS  Google Scholar 

  88. Yoshihara S, Isozumi H, Kasai M, Yonehara H, Ando Y, Oyaizu K, et al. Improving charge/discharge properties of radical polymer electrodes influenced strongly by current collector/carbon fiber interface. J Phys Chem B. 2010;114:8335–40.

    Article  CAS  PubMed  Google Scholar 

  89. Yoshihara S, Katsuta H, Isozumi H, Kasai M, Oyaizu K, Nishide H. Designing current collector/composite electrode interfacial structure of organic radical battery. J Power Sour. 2011;196:7806–11.

    Article  CAS  Google Scholar 

  90. Choi W, Endo S, Oyaizu K, Nishide H, Geckeler KE. Robust and efficient charge storage by uniform grafting of TEMPO radical polymer around multi-walled carbon nanotubes. J Mater Chem A. 2013;1:2999–3003.

    Article  CAS  Google Scholar 

  91. Sukegawa T, Sato K, Oyaizu K, Nishide H. Efficient charge transport of a radical polyether/SWCNT composite electrode for an organic radical battery with high charge-storage density. RSC Adv. 2015;5:15448–52.

    Article  CAS  ADS  Google Scholar 

  92. Sato K, Wakamatsu H, Katagiri R, Oyaizu K, Nishide H. An ultrahigh output rechargeable electrode of a hydrophilic radical polymer/nanocarbon hybrid with an exceptionally large current density beyond 1 A cm−2. Adv Mater. 2018;30:1800900.

    Article  Google Scholar 

  93. Hatakeyama-Sato K, Mizukami R, Serikawa T, Oyaizu K, Nishide H. A highly flexible yet >300 mAh cm-3 energy density lithium-ion battery assembled with the cathode of a redox-active polyether binder. Energy Technol. 2020;8:1901159.

    Article  CAS  Google Scholar 

  94. Oyaizu K, Tatsuhira H, Nishide H. Facile charge transport and storage by a TEMPO-populated redox mediating polymer integrated with polyaniline as electrical conducting path. Polym J. 2015;47:212–9.

    Article  CAS  Google Scholar 

  95. Oka K, Strietzel C, Emanuelsson R, Nishide H, Oyaizu K, Strømme M, et al. Characterization of PEDOT-quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries. Electrochem Commun. 2019;105:106489.

    Article  CAS  Google Scholar 

  96. Oka K, Strietzel C, Emanuelsson R, Nishide H, Oyaizu K, Strømme M, et al. Conducting redox polymer as a robust organic electrode-active material in acidic aqueous electrolyte towards polymer-air secondary batteries. ChemSusChem. 2020;13:2280–5.

    Article  CAS  PubMed  Google Scholar 

  97. Oka K, Löfgren R, Emanuelsson R, Nishide H, Oyaizu K, Strømme M, et al. Conducting redox polymer as organic anode material for polymer-manganese secondary batteries. ChemElectroChem. 2020;7:3336–40.

    Article  CAS  Google Scholar 

  98. Liang Y, Jing Y, Gheytani S, Lee KY, Liu P, Facchetti A, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater. 2017;16:841–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  99. Molina A, Patil N, Ventosa E, Liras M, Palma J, Marcilla R. Electrode engineering of redox-active conjugated microporous polymers for ultra-high areal capacity organic batteries. ACS Energy Lett. 2020;5:2945–53.

    Article  CAS  Google Scholar 

  100. Russell JC, Posey VA, Gray J, May R, Reed DA, Zhang H, et al. High-performance organic pseudocapacitors via molecular contortion. Nat Mater. 2021;20:1136–41.

    Article  CAS  PubMed  ADS  Google Scholar 

  101. Speer ME, Sterzenbach C, Esser B. Evaluation of cyclooctatetraene-based aliphatic polymers as battery materials: synthesis, electrochemical, and thermal characterization supported by DFT calculations. ChemPlusChem. 2017;82:1274–81.

    Article  CAS  PubMed  Google Scholar 

  102. Kolek M, Otteny F, Schmidt P, Mück-Lichtenfeld C, Einholz C, Becking J, et al. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ Sci. 2017;10:2334–41.

    Article  CAS  Google Scholar 

  103. Lee B, Kang K. Long-lived electrodes for plastic batteries. Nature. 2017;549:339–40.

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Otteny F, Kolek M, Becking J, Winter M, Bieker P, Esser B. Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking. Adv Energ Mater. 2018;8:1802151.

    Article  Google Scholar 

  105. Speer ME, Kolek M, Jassoy JJ, Heine J, Winter M, Bieker PM, et al. Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem Commun. 2015;51:15261–4.

    Article  CAS  Google Scholar 

  106. Gomez I, Leonet O, Blazquez JA, Grande HJ, Mecerreyes D. Poly(anthraquinonyl sulfides): high capacity redox polymers for energy storage. ACS Macro Lett. 2018;7:419–24.

    Article  CAS  PubMed  Google Scholar 

  107. Kawai T, Nakao S, Nishide H, Oyaizu K. Poly(diphenanthrenequinone-substituted norbornene) for long life and efficient lithium battery cathodes. Bull Chem Soc Jpn. 2018;91:721–7.

    Article  CAS  Google Scholar 

  108. Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, et al. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J Am Chem Soc. 2012;134:19694–700.

    Article  CAS  PubMed  Google Scholar 

  109. Ueberricke L, Mildner F, Wu Y, Thauer E, Wickenhäuser T, Zhang WS, et al. Redox-active, porous pyrene tetraone dendritic polymers as cathode materials for lithium-ion batteries. Mater Adv. 2023;4:1604–11.

    Article  CAS  Google Scholar 

  110. Takahashi T, Korolev K, Tsuji K, Oyaizu K, Nishide H, Bryuzgin E, et al. Facile grafting-onto-preparation of block copolymers of TEMPO and glycidyl methacrylates on an oxide substrate as an electrode-active layer. Polymer. 2015;68:310–14.

    Article  CAS  Google Scholar 

  111. Zhang K, Hu Y, Wang L, Monteiro MJ, Jia Z. Pyrene-functionalized PTMA by NRC for greater π–π stacking with rGO and enhanced electrochemical properties. ACS Appl Mater Interfaces. 2017;9:34900–08.

    Article  CAS  PubMed  Google Scholar 

  112. Tokue H, Murata T, Agatsuma H, Nishide H, Oyaizu K. Charge-discharge with rocking-chair-type Li+ migration characteristics in a zwitterionic radical copolymer composed of TEMPO and trifluoromethanesulfonylimide with carbonate electrolytes for a high-rate Li-ion battery. Macromolecules. 2017;50:1950–8.

    Article  CAS  ADS  Google Scholar 

  113. Chae IS, Koyano M, Oyaizu K, Nishide H. Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. J Mater Chem A. 2013;1:1326–33.

    Article  CAS  Google Scholar 

  114. Chae IS, Koyano M, Sukegawa T, Oyaizu K, Nishide H. Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte for novel Li+ host material in a Li-ion battery. J Mater Chem A. 2013;1:9608–11.

    Article  CAS  Google Scholar 

  115. Hatakeyama-Sato K, Matsumoto S, Takami H, Nagatsuka T, Oyaizu K. A PROXYL-type norbornene polymer for high-voltage cathodes in lithium batteries. Macromol Rapid Commun. 2021;42:2100374.

    Article  CAS  Google Scholar 

  116. Hatakeyama-Sato K, Go C, Akahane T, Kaseyama T, Yoshimoto T, Oyaizu K. Quadruply fused aromatic heterocycles toward 4 V-class robust organic cathode-active materials. Batteries Supercaps. 2022;5:e202200178.

    Article  CAS  Google Scholar 

  117. Hatakeyama-Sato K, Matsumoto S, Aida I, Oyaizu K. Anomalous potential shifts of redox-active molecules in highly concentrated electrolytes. Chem Lett. 2021;50:1375–7.

    Article  CAS  Google Scholar 

  118. Oka K, Kato R, Oyaizu K, Nishide H. Poly(vinyldibenzothiophenesulfone): its redox capability at very negative potential toward an all-organic rechargeable device with high-energy density. Adv Funct Mater. 2018;28:1805858.

    Article  Google Scholar 

  119. Perticarari S, Grange E, Doizy T, Quarez E, Oyaizu K, Guyomard D, et al. Full organic aqueous battery based on TEMPO small molecule with millimeter-thick electrodes. Chem Mater. 2019;31:1869–80.

    Article  CAS  Google Scholar 

  120. Oka K, Murao S, Kobayashi K, Nishide H, Oyaizu K. Charge- and proton-storage capability of naphthoquinone-substituted poly(allylamine) as electrode-active material for polymer-air secondary batteries. ACS Appl Energy Mater. 2020;3:12019–24.

    Article  CAS  Google Scholar 

  121. Oka K, Murao S, Kakaoka M, Nishide H, Oyaizu K. Hydrophilic anthraquinone-substituted polymer: its environmentally friendly preparation and efficient charge/proton-storage capability for polymer-air secondary batteries. Macromolecules. 2021;54:4854–9.

    Article  CAS  ADS  Google Scholar 

  122. Hatakeyama-Sato K, Tezuka T, Ichinoi R, Matsumono S, Sadakuni K, Oyaizu K. Metal-free, solid-state, and paper-like rechargeable batteries consisting of redox-active polyethers. ChemSusChem. 2020;13:2443–8.

    Article  CAS  PubMed  Google Scholar 

  123. Hatakeyama-Sato K, Wakamatsu H, Yamagishi K, Fujie T, Takeoka S, Oyaizu K, et al. Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small. 2019;15:1805296.

    Article  Google Scholar 

  124. Ho JC, Hatakeyama-Sato K, Chiba A, Hayashi M, Igarashi Y, Oyaizu K, et al. Sandwich configuration of zinc anode, gel electrolyte, and radical polymer cathode for fully stretch-rechargeable battery. Adv Sustain Syst. 2023;7:2300080.

    Article  CAS  Google Scholar 

  125. Hatakeyama-Sato K, Igarashi Y, Oyaizu K. Charge-transport kinetics of dissolved redox-active polymers for rational design of flow batteries. RSC Adv. 2023;13:547–57.

    Article  CAS  ADS  Google Scholar 

  126. Ding C, Zhang H, Li X, Liu T, Xing F. Vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett. 2013;4:1281–94.

    Article  CAS  PubMed  Google Scholar 

  127. Deller Z, Jones LA, Maniam S. Aqueous redox flow batteries: how ‘green’ are the redox active materials? Green Chem. 2021;23:4955–79.

    Article  CAS  Google Scholar 

  128. Noack J, Roznyatovskaya N, Herr T, Fischer P. The chemistry of redox-flow batteries. Angew Chem Int Ed. 2015;54:9776–809.

    Article  CAS  Google Scholar 

  129. Soloveichik GL. Flow batteries: current status and trends. Chem Rev. 2015;115:11533–58.

    Article  CAS  PubMed  Google Scholar 

  130. Fang X, Li Z, Zhao Y, Yue D, Zhang L, Wei X. Multielectron organic redoxmers for energy-dense redox flow batteries. ACS Mater Lett. 2022;4:277–306.

    Article  CAS  Google Scholar 

  131. Lai YY, Li X, Zhu Y. Polymeric active materials for redox flow battery application. ACS Appl Polym Mater. 2020;2:113–28.

    Article  CAS  Google Scholar 

  132. Burgess M, Moore JS, Rodríguez-López J. Redox active polymers as soluble nanomaterials for energy storage. Acc Chem Res. 2016;49:2649–57.

    Article  CAS  PubMed  Google Scholar 

  133. Machado CA, Brown GO, Yang R, Hopkins TE, Pribyl JG, Epps TH III. Redox flow battery membranes: improving battery performance by leveraging structure-property relationships. ACS Energy Lett. 2021;6:158–76.

    Article  CAS  Google Scholar 

  134. Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US. Redox-flow batteries: from metals to organic redox-active materials. Angew Chem Int Ed. 2017;56:686–711.

    Article  CAS  Google Scholar 

  135. Hatakeyama-Sato K, Nagano T, Noguchi S, Sugai Y, Du J, Nishide H, et al. Hydrophilic organic redox-active polymer nanoparticles for higher energy density flow batteries. ACS Appl Polym Mater. 2019;1:188–96.

    Article  CAS  Google Scholar 

  136. Sukegawa T, Masuko I, Oyaizu K, Nishide H. Expanding the dimensionality of polymers populated with organic robust radicals toward flow cell application: synthesis of TEMPO-crowded bottlebrush polymers using anionic polymerization and ROMP. Macromolecules. 2014;47:8611–17.

    Article  CAS  ADS  Google Scholar 

  137. Oyama N, Ohsaka T. Voltammetric diagnosis of charge transport on polymer coated electrodes, Murray RW. Molecular design of electrode surfaces. New York: John Wiley & Sons; 1992.

  138. Tokue H, Oyaizu K, Sukegawa T, Nishide H. TEMPO/viologen electrochemical heterojunction for diffusion controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross reaction at interface between dissimilar redox polymers. ACS Appl Mater Interfaces. 2014;6:4043–49.

    Article  CAS  PubMed  Google Scholar 

  139. Tokue H, Kakitani K, Nishide H, Oyaizu K. Electrochemical current rectification with cross reaction at a TEMPO/viologen-substituted polymer thin-layer heterojunction. RSC Adv. 2016;6:99195–201.

    Article  CAS  ADS  Google Scholar 

  140. Tokue H, Kakitani K, Nishide H, Oyaizu K. Redox mediation through TEMPO-substituted polymer with nanogap electrodes for electrochemical amplification. Chem Lett. 2017;46:647–50.

    Article  CAS  Google Scholar 

  141. Sato K, Yamasaki T, Mizuma T, Oyaizu K, Nishide H. Dynamic switching of ionic conductivity by cooperative interaction of polyviologen and liquid crystals for efficient charge storage. J Mater Chem A. 2016;4:3249–52.

    Article  CAS  Google Scholar 

  142. Sato K, Yamasaki T, Nishide H, Oyaizu K. Grafted radical polymer brush for surface-driven switching of chiral nematic liquid crystals. Polym J. 2017;49:691–3.

    Article  CAS  Google Scholar 

  143. Sato K, Mizuma T, Nishide H, Oyaizu K. Command surface of self-organizing structures by radical polymers with cooperative redox reactivity. J Am Chem Soc. 2017;139:13600–3.

    Article  CAS  PubMed  Google Scholar 

  144. Martin HJ, Hughes BK, Braunecker WA, Gennett T, Dadmun MD. The impact of radical loading and oxidation on the conformation of organic radical polymers by small angle neutron scattering. J Mater Chem A. 2018;6:15659–67.

    Article  CAS  Google Scholar 

  145. Kemper TW, Gennett T, Larsen RE. Molecular dynamics simulation study of solvent and state of charge effects on solid-phase structure and counterion binding in a nitroxide radical containing polymer energy storage material. J Phys Chem C. 2016;120:25639–46.

    Article  CAS  Google Scholar 

  146. Wang S, Li F, Easley AD, Lutkenhaus JL. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat Mater. 2019;18:69–75.

    Article  CAS  PubMed  ADS  Google Scholar 

  147. Sato K, Ichinoi R, Mizukami R, Serikawa T, Sasaki Y, Lutkenhaus J, et al. Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J Am Chem Soc. 2018;140:1049–56.

    Article  CAS  PubMed  Google Scholar 

  148. Hatakeyama-Sato K, Masui T, Serikawa T, Sasaki Y, Choi W, Doo SG, et al. Non- conjugated redox-active polymer mediators for rapid electrocatalytic charging of lithium metal oxides. ACS Appl Energy Mater. 2019;2:6375–82.

    Article  CAS  Google Scholar 

  149. Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy JF. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep. 2014;4:4315.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  150. Dolphijn G, Isikli S, Gauthy F, Vlad A, Gohy JF. Hybrid LiMn2O4-radical polymer cathodes for pulse power delivery applications. Electrochim Acta. 2017;255:442–8.

    Article  CAS  Google Scholar 

  151. Suwa K, Oyaizu K, Segawa H, Nishide H. Anti-oxidizing radical polymer-incorporated perovskite layers and their photovoltaic characteristics in solar cells. ChemSusChem. 2019;12:5207–12.

    Article  CAS  PubMed  Google Scholar 

  152. Hatakeyama-Sato K, Akahane T, Go C, Kaseyama T, Yoshimoto T, Oyaizu K. Ultrafast charge/discharge by a 99.9% conventional lithium iron phosphate electrode containing 0.1% redox-active fluoflavin polymer. ACS Energy Lett. 2020;5:1712–7.

    Article  CAS  Google Scholar 

  153. Hatakeyama-Sato K, Go C, Kaseyama T, Yoshimoto T, Oyaizu K. Accelerating charge/discharge of lithium iron phosphate by charge mediation reaction of poly(dimethylfluoflavin-substituted norbornene). Chem Lett. 2022;51:1040–3.

    Article  CAS  Google Scholar 

  154. Hatakeyama-Sato K, Sadakuni K, Kitagawa K, Oyaizu K. Thianthrene polymers as 4 V-class organic mediators for redox targeting reaction with LiMn2O4 in flow batteries. Sci Rep. 2023;13:5711.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  155. Yamamoto K, Suemasa D, Masuda K, Aita K, Endo T. Hyperbranched triphenylamine polymer for ultrafast battery cathode. ACS Appl Mater Interfaces. 2018;10:6346–53.

    Article  CAS  PubMed  Google Scholar 

  156. Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J. TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc. 2014;136:15054–64.

    Article  CAS  PubMed  Google Scholar 

  157. Kojima Y. Hydrogen storage materials for hydrogen and energy carriers. Int J Hydrog Energy. 2019;44:18179–92.

    Article  CAS  Google Scholar 

  158. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  159. Gianotti E, Taillades-Jacquin M, Rozière J, Jones DJ. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 2018;8:4660–80.

    Article  CAS  Google Scholar 

  160. Baum ZJ, Diaz LL, Konovalova T, Zhou QA. Materials research directions toward a green hydrogen economy: a review. ACS Omega. 2022;7:32908–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim TW, Jeong H, Baik JH, Suh YW. State-of-the-art catalysts for hydrogen storage in liquid organic hydrogen carriers. Chem Lett. 2022;51:239–55.

    Article  CAS  Google Scholar 

  162. Kato R, Yoshimasa K, Egashira T, Oya T, Oyaizu K, Nishide H. A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and -releasing under mild conditions. Nat Commun. 2016;7:13032.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  163. Kato R, Oka K, Yoshimasa K, Nakajima M, Nishide H, Oyaizu K. Reversible hydrogen releasing and fixing with poly(vinylfluorenol) through a mild Ir-catalyzed dehydrogenation and electrochemical hydrogenation. Macromol. Rapid Commun. 2019;40:1900139.

  164. Oka K, Kaiwa Y, Kataoka M, Fujita K, Oyaizu K. A polymer sheet-based hydrogen carrier. Eur J Org Chem. 2020;2020:5876–9.

    Article  CAS  Google Scholar 

  165. Miyake J, Ogawa Y, Tanaka T, Ahn J, Oka K, Oyaizu K, et al. Rechargeable proton exchange membrane fuel cell containing an intrinsic hydrogen storage polymer. Commun Chem 2020;3:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kato R, Oya T, Shimazaki Y, Oyaizu K, Nishide H. A hydrogen-storing quinaldine polymer: nickel-electrodeposition-assisted hydrogenation and subsequent hydrogen evolution. Polym Int. 2017;66:647–52.

    Article  CAS  Google Scholar 

  167. Oka K, Kaiwa Y, Furukawa S, Nishide H, Oyaizu K. Reversible hydrogen fixation and release under mild conditions by poly(vinylquinoxaline). ACS Appl Polym Mater. 2020;2:2756–60.

    Article  CAS  Google Scholar 

  168. Kaiwa Y, Oka K, Nishide H, Oyaizu K. Facile reversible hydrogenation of a poly(6-vinyl-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline) gel-like solid. Polym Adv Technol. 2021;32:1162–7.

    Article  CAS  Google Scholar 

  169. Oka K, Kataoka M, Nishide H, Oyaizu K. Poly(vinyl diphenylquinoxaline) as a hydrogen storage material toward rapid hydrogen evolution. MRS Commun. 2022;12:213–6.

    Article  CAS  ADS  Google Scholar 

  170. Oka K, Tobita Y, Kataoka M, Murao S, Kobayashi K, Furukawa S, et al. Synthesis of vinyl polymers substituted with 2-propanol and acetone and investigation of their reversible hydrogen storage capability. Polym J. 2021;53:799–804.

    Article  CAS  Google Scholar 

  171. Oka K, Tobita Y, Kataoka M, Kobayashi K, Kaiwa Y, Nishide H, et al. Hydrophilic isopropanol/acetone-substituted polymers for safe hydrogen storage. Polym Int. 2022;71:348–51.

    Article  CAS  Google Scholar 

  172. Oka K, Kataoka M, Kaiwa Y, Oyaizu K. Alcohol-substituted vinyl polymers for stockpiling hydrogen. Bull Chem Soc Jpn. 2021;94:2770–3.

    Article  CAS  Google Scholar 

  173. Oka K, Kaiwa Y, Kobayashi K, Tobita Y, Oyaizu K. Accelerating the dehydrogenation reaction of alcohols by introducing them into poly(allylamine). Polym Chem. 2023;14:2588–91.

    Article  CAS  Google Scholar 

  174. Fujita K, Tanaka Y, Kobayashi M, Yamaguchi R. Homogeneous perdehydrogenation and perhydrogenation of fused bicyclic N-heterocycles catalyzed by iridium complexes bearing a functional bipyridonate ligand. J Am Chem Soc. 2014;136:4829–32.

    Article  CAS  PubMed  Google Scholar 

  175. Kumar A, Janes T, Espinosa-Jalapa NA, Milstein D. Selective hydrogenation of cyclic imides to diols and amines and its application in the development of a liquid organic hydrogen carrier. J Am Chem Soc. 2018;140:7453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fujita K, Wada T, Shiraishi T. Reversible interconversion between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine by iridium-catalyzed hydrogenation/dehydrogenation for efficient hydrogen storage. Angew Chem Int Ed. 2017;129:11026–9.

    Article  ADS  Google Scholar 

  177. Mikami Y, Ebata K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Reversible dehydrogenation-hydrogenation of tetrahydroquinoline-quinoline using a supported copper nanoparticle catalyst. Heterocycles. 2010;82:1371–7.

    Article  Google Scholar 

  178. Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GA. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J Am Chem Soc. 2017;139:18084–92.

    Article  CAS  PubMed  Google Scholar 

  179. Modisha PM, Ouma CNM, Garidzirai R, Wasserscheid P, Bessarabov D. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels. 2019;33:2778–96.

    Article  CAS  Google Scholar 

  180. Shimbayashi T, Fujita K. Metal-catalyzed hydrogenation and dehydrogenation reactions for efficient hydrogen storage. Tetrahedron. 2020;76:1–28.

    Article  Google Scholar 

  181. Zhang L, Qiu R, Xue X, Pan Y, Xu C, Li H, et al. Versatile (pentamethylcyclopentadienyl)rhodium-2,2′-bipyridine (Cp*Rh-bpy) catalyst for transfer hydrogenation of N-heterocycles in water. Adv Synth Catal. 2015;357:3529–37.

    Article  CAS  Google Scholar 

  182. Wang S, Huang H, Bruneau C, Fischmeister C. Iridium-catalyzed hydrogenation and dehydrogenation of N-heterocycles in water under mild conditions. ChemSusChem. 2019;12:2350–4.

    Article  CAS  PubMed  Google Scholar 

  183. Preuster P, Papp C, Wasserscheid P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc Chem Res. 2017;50:74–85.

    Article  CAS  PubMed  Google Scholar 

  184. Aakko-Saksa PT, Cook C, Kiviaho J, Repo T. Liquid organic hydrogen carriers for transportation and storing of renewable energy - review and discussion. J Power Sour. 2018;396:803–23.

    Article  CAS  Google Scholar 

  185. Dean D, Davis B, Jessop PG. The effect of temperature, catalyst and sterics on the rate of N-heterocycle dehydrogenation for hydrogen storage. N. J Chem. 2011;35:417–22.

    Article  CAS  Google Scholar 

  186. Crabtree RH. Hydrogen storage in liquid organic heterocycles. Energy Environ Sci. 2008;1:134–8.

    Article  CAS  Google Scholar 

  187. Fujita K. Development and application of new iridium catalysts for efficient dehydrogenative reactions of organic molecules. Bull Chem Soc Jpn. 2019;92:344–51.

    Article  CAS  Google Scholar 

  188. Kawahara R, Fujita K, Yamaguchi R. Cooperative catalysis by iridium complexes with a bipyridonate ligand: versatile dehydrogenative oxidation of alcohols and reversible dehydrogenation-hydrogenation between 2-propanol and acetone. Angew Chem Int Ed. 2012;51:12790–4.

    Article  CAS  Google Scholar 

  189. Kawahara R, Fujita K, Yamaguchi R. Dehydrogenative oxidation of alcohols in aqueous media using water-soluble and reusable Cp*Ir catalysts bearing a functional bipyridine ligand. J Am Chem Soc. 2012;134:3643–6.

    Article  CAS  PubMed  Google Scholar 

  190. Moromi SK, Siddiki SMAH, Kon K, Toyao T, Shimizu K. Acceptorless dehydrogenation of N-heterocycles by supported Pt catalysts. Catal Today. 2017;281:507–11.

    Article  CAS  Google Scholar 

  191. Eblagon KM, Rentsch D, Friedrichs O, Remhof A, Zuettel A, Ramirez-Cuesta AJ, et al. Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier. Int J Hydrog Energy. 2010;35:11609–21.

    Article  CAS  Google Scholar 

  192. Eblagon KM, Tam K, Tsang SCE. Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy Environ Sci. 2012;5:8621–30.

    Article  CAS  Google Scholar 

  193. Matsunaga T, Kubota T, Sugimoto T, Satoh M. High-performance lithium secondary batteries using cathode active materials of triquinoxalinylenes exhibiting six electron migration. Chem Lett. 2011;40:750–2.

    Article  CAS  Google Scholar 

  194. Brushett FR, Vaughey JT, Jansen AN. An all-organic non-aqueous lithium-ion redox flow battery. Adv Energy Mater. 2012;2:1390–6.

    Article  CAS  Google Scholar 

  195. Yan NF, Li GR, Gao XP. Electroactive organic compounds as anode-active materials for solar rechargeable redox flow battery in dual-phase electrolytes. J Electrochem Soc. 2014;161:A736–41.

    Article  CAS  Google Scholar 

  196. Leung P, Aili D, Xu Q, Rodchanarowan A, Shah AA. Rechargeable organic-air redox flow batteries. Sustain Energy Fuels. 2018;2:2252–9.

    Article  CAS  Google Scholar 

  197. Onoda M, Nagano Y, Fujita K. Iridium-catalyzed dehydrogenative lactonization of 1,4-butanediol and reversal hydrogenation: new hydrogen storage system using cheap organic resources. Int J Hydrog Energy. 2019;44:28514–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research (Nos. 18H05515, 21H04695 and 22K18335) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Oyaizu.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyaizu, K. Reversible and high-density energy storage with polymers populated with bistable redox sites. Polym J 56, 127–144 (2024). https://doi.org/10.1038/s41428-023-00857-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00857-7

Search

Quick links