Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Creative trial design in RA: optimizing patient outcomes

Abstract

The rheumatology community has witnessed remarkable advances in the management of rheumatoid arthritis (RA) made possible by the development of highly effective biologic DMARDs. Robust randomized controlled trials of clinical efficacy, equipped with validated outcome measures, ensured these therapies could enter the clinical arena and thus substantially improve patient outcomes. Current management principles, which follow a 'treat-to-target' paradigm, advocate tight control of disease activity with the aim of achieving clinical remission. However, efficacy trials are not yet aligned with this approach, hampering patient recruitment. This impediment and the usual approach of inclusion of previously failed treatment arms (to protect methodological concerns) is prompting reappraisal of RA trial design and the consideration of more pragmatic studies that reflect real-life practice. In addition, the aspirations of the rheumatology community to strive for personalized medicine means innovative approaches to trial design are needed to complement the efficacy trial. This Review appraises the current trial landscape and provides insights and key concepts from other fields such as oncology as to the potential utility (as well as the limitations) of pragmatic trial designs such as adaptive trials and biomarker-driven trials.

Key Points

  • Clinical efficacy trials have been instrumental in ensuring successful drug development and the introduction of many biologic DMARDs since the 1990s

  • The evidence base for and the success of the current management principles of treat-to-target is forcing consideration of more pragmatic trials to reflect real-life practice

  • Unanswered questions remain about the optimal use of both biologic and nonbiologic DMARDs, as well as how to achieve personalized medicine, which could be answered using novel pragmatic trial designs

  • Adaptive trials (including biomarker-driven trials) offer the opportunity of realising more targeted management in exploratory, early phase (I and II) trials and in phase III (confirmatory) pragmatic trials

  • Methodological and statistical challenges, including the risk of type I errors, means caution is needed in the conduct of adaptive trial designs

  • The rheumatology community needs to focus on putting itself in a position to deliver alternatives to the 'classic' efficacy trial design

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current approach to the management of RA: treat-to-target.
Figure 2: Implications of the treat-to-target approach for RA trial design.
Figure 3: Broad comparison of efficacy and pragmatic trial designs for the three main treatment populations in RA.
Figure 4: Flow diagram of biomarker-driven enrichment and stratification trial designs.
Figure 5: Possible scenarios and designs for future RA studies.

Similar content being viewed by others

References

  1. Lee, D. M. & Weinblatt, M. E. Rheumatoid arthritis. Lancet 358, 903–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hench, P. S. et al. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc. Staff Meet. Mayo Clin. 24, 181–197 (1949).

    CAS  PubMed  Google Scholar 

  3. Schwieterman, W. D. Issues in the design of new clinical trials for rheumatoid arthritis therapeutics. Nat. Clin. Pract. Rheumatol. 4, 641–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. O'Dell, J. R. et al. Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N. Engl. J. Med. 334, 1287–1291 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Haagsma, C. J. et al. Combination of methotrexate and sulphasalazine vs methotrexate alone: a randomized open clinical trial in rheumatoid arthritis patients resistant to sulphasalazine therapy. Br. J. Rheumatol. 33, 1049–1055 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Dougados, M. et al. Combination therapy in early rheumatoid arthritis: a randomised, controlled, double blind 52 week clinical trial of sulphasalazine and methotrexate compared with the single components. Ann. Rheum. Dis. 58, 220–225 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boers, M. et al. Randomised comparison of combined step-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone in early rheumatoid arthritis. Lancet 350, 309–318 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Mottonen, T. et al. Comparison of combination therapy with single-drug therapy in early rheumatoid arthritis: a randomised trial. FIN-RACo trial group. Lancet 353, 1568–1573 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Smolen, J. S. et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann. Rheum. Dis. 69, 631–637 (2010).

    Article  PubMed  Google Scholar 

  10. Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364, 263–269 (2004).

    Article  PubMed  Google Scholar 

  11. Goekoop-Ruiterman, Y. P. et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. Arthritis Rheum. 52, 3381–3390 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Maini, R. et al. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354, 1932–1939 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Moreland, L. W. et al. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann. Intern. Med. 130, 478–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Weinblatt, M. E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Emery, P. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz, D. & Lellouch, J. Explanatory and pragmatic attitudes in therapeutical trials. J. Chronic Dis. 20, 637–648 (1967).

    Article  CAS  PubMed  Google Scholar 

  20. Freedman, B. Equipoise and the ethics of clinical research. N. Engl. J. Med. 317, 141–145 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Breedveld, F. C. & Kalden, J. R. Appropriate and effective management of rheumatoid arthritis. Ann. Rheum. Dis. 63, 627–633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Combe, B. Early rheumatoid arthritis: strategies for prevention and management. Best Pract. Res. Clin. Rheumatol. 21, 27–42 (2007).

    Article  PubMed  Google Scholar 

  23. Klarenbeek, N. B., Allaart, C. F., Kerstens, P. J., Huizinga, T. W. & Dijkmans, B. A. The BeSt story: on strategy trials in rheumatoid arthritis. Curr. Opin. Rheumatol. 21, 291–298 (2009).

    Article  PubMed  Google Scholar 

  24. Schwartz, D. & Lellouch, J. Explanatory and pragmatic attitudes in therapeutical trials. J. Clin. Epidemiol. 62, 499–505 (2009).

    Article  PubMed  Google Scholar 

  25. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 69, 964–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Knevel, R. et al. Current evidence for a strategic approach to the management of rheumatoid arthritis with disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 69, 987–994 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. The CONSORT Group. The CONSORT statement [online], (2013).

  28. Zwarenstein, M. et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ 337, a2390 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. FDA. Guidance for industry: clinical development programs for drugs, devices, and biological products for the treatment of rheumatoid arthritis (RA) [online], (1999).

  30. European Agency for the Evaluation of Medicinal Products. Points to consider on clinical investigation of medicinal products other than Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) for the treatment of rheumatoid arthritis [online] (2003).

  31. Pullar, T., Hunter, J. A. & Capell, H. A. Effect of sulphasalazine on the radiological progression of rheumatoid arthritis. Ann. Rheum. Dis. 46, 398–402 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pullar, T., Hunter, J. A. & Capell, H. A. Sulphasalazine in rheumatoid arthritis: a double blind comparison of sulphasalazine with placebo and sodium aurothiomalate. Br. Med. J. (Clin. Res. Ed.) 287, 1102–1104 (1983).

    Article  CAS  Google Scholar 

  33. ten Wolde, S. et al. Randomised placebo-controlled study of stopping second-line drugs in rheumatoid arthritis. Lancet 347, 347–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Gaujoux-Viala, C. et al. Current evidence for the management of rheumatoid arthritis with synthetic disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 69, 1004–1009 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Donahue, K. E. et al. Systematic review: comparative effectiveness and harms of disease-modifying medications for rheumatoid arthritis. Ann. Intern. Med. 148, 124–134 (2008).

    Article  PubMed  Google Scholar 

  36. Elliott, M. J. et al. Repeated therapy with monoclonal antibody to tumour necrosis factor α (cA2) in patients with rheumatoid arthritis. Lancet 344, 1125–1127 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Klareskog, L. et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363, 675–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Breedveld, F. C. et al. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 54, 26–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Nam, J. L. et al. Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum. Dis. 69, 976–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Dawes, P. T. et al. Rheumatoid arthritis: treatment which controls the Creactive protein and erythrocyte sedimentation rate reduces radiological progression. Br. J. Rheumatol. 25, 44–49 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. van Leeuwen, M. A. et al. Interrelationship of outcome measures and process variables in early rheumatoid arthritis. A comparison of radiologic damage, physical disability, joint counts, and acute phase reactants. J. Rheumatol. 21, 425–429 (1994).

    CAS  PubMed  Google Scholar 

  42. Drossaers-Bakker, K. W. et al. Long-term course and outcome of functional capacity in rheumatoid arthritis: the effect of disease activity and radiologic damage over time. Arthritis Rheum. 42, 1854–1860 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Welsing, P. M. et al. The relationship between disease activity and radiologic progression in patients with rheumatoid arthritis: a longitudinal analysis. Arthritis Rheum. 50, 2082–2093 (2004).

    Article  PubMed  Google Scholar 

  44. Aletaha, D., Smolen, J. & Ward, M. M. Measuring function in rheumatoid arthritis: Identifying reversible and irreversible components. Arthritis Rheum. 54, 2784–2792 (2006).

    Article  PubMed  Google Scholar 

  45. Bruynesteyn, K., Landewe, R., van der Linden, S. & van der Heijde, D. Radiography as primary outcome in rheumatoid arthritis: acceptable sample sizes for trials with 3 months' follow up. Ann. Rheum. Dis. 63, 1413–1418 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sugarman, J. & Bingham, C. O. 3rd. Ethical issues in rheumatology clinical trials. Nat. Clin. Pract. Rheumatol. 4, 356–363 (2008).

    Article  PubMed  Google Scholar 

  47. Boers, M. The time has come to limit the placebo period in rheumatoid arthritis trials to 3 months: a systematic comparison of 3- and 6-month response rates in trials of biological agents. Ann. Rheum. Dis. 69, 186–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Boers, M. A new design for registration trials in rheumatoid arthritis allowing secondary head-to-head comparisons with standard of care treatment including biologicals. Ann. Rheum. Dis. 69, 4–6 (2010).

    Article  PubMed  Google Scholar 

  49. Keystone, E. et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 58, 3319–3329 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Bakker, M. F. et al. Low-dose prednisone inclusion in a methotrexate-based, tight control strategy for early rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 156, 329–339 (2012).

    Article  PubMed  Google Scholar 

  51. van Vollenhoven, R. F. et al. Addition of infliximab compared with addition of sulfasalazine and hydroxychloroquine to methotrexate in patients with early rheumatoid arthritis (Swefot trial): 1-year results of a randomised trial. Lancet 374, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kavanaugh, A. et al. Clinical, functional and radiographic consequences of achieving stable low disease activity and remission with adalimumab plus methotrexate or methotrexate alone in early rheumatoid arthritis: 26-week results from the randomised, controlled OPTIMA study. Ann. Rheum. Dis. 72, 64–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Estellat, C. & Ravaud, P. Lack of head-to-head trials and fair control arms: randomized controlled trials of biologic treatment for rheumatoid arthritis. Arch. Intern. Med. 172, 237–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Smolen, J. S. et al. Recommendations for an update of 2003 European regulatory requirements for registration of drugs to be used in the treatment of RA. Curr. Med. Res. Opin. 27, 315–325 (2011).

    Article  PubMed  Google Scholar 

  55. Gabay, C. et al. Tocilizumab (TCZ) monotherapy is superior to adalimumab (ADA) monotherapy in reducing disease activity in patients with rheumatoid arthritis (RA): 24-week data from the phase 4 ADACTA trial [abstract LB0003]. Ann. Rheum. Dis. 71 (Suppl. 3), 152 (2012).

    Google Scholar 

  56. Schiff, M. et al. Abatacept SC versus adalimumab on background methotrexate in RA: one year results from the AMPLE study [abstract OP0022] Ann. Rheum. Dis. 71 (Suppl. 3), 60 (2012).

    Google Scholar 

  57. Kaul, S. & Diamond, G. A. Making sense of noninferiority: a clinical and statistical perspective on its application to cardiovascular clinical trials. Prog. Cardiovasc. Dis. 49, 284–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Tuma, R. S. Trend toward noninferiority trials may mean more difficult interpretation of trial results. J. Natl Cancer Inst. 99, 1746–1748 (2007).

    Article  PubMed  Google Scholar 

  59. Vermeulen, L. Gain in popularity of noninferiority trial design: caveat lector. Pharmacotherapy 31, 831–832 (2011).

    Article  Google Scholar 

  60. Carroll, K. J. Active-controlled, non-inferiority trials in oncology: arbitrary limits, infeasible sample sizes and uninformative data analysis. Is there another way? Pharm. Stat. 5, 283–293 (2006).

    Article  PubMed  Google Scholar 

  61. D'Agostino, R. B., Sr., Massaro, J. M. & Sullivan, L. M. Non-inferiority trials: design concepts and issues - the encounters of academic consultants in statistics. Stat. Med. 22, 169–186 (2003).

    Article  PubMed  Google Scholar 

  62. Ellenberg, S. S. & Temple, R. Placebo-controlled trials and active-control trials in the evaluation of new treatments. Part 2: practical issues and specific cases. Ann. Intern. Med. 133, 464–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Gomberg-Maitland, M., Frison, L. & Halperin, J. L. Active-control clinical trials to establish equivalence or noninferiority: methodological and statistical concepts linked to quality. Am. Heart J. 146, 398–403 (2003).

    Article  PubMed  Google Scholar 

  64. Kaul, S. & Diamond, G. A. Good enough: a primer on the analysis and interpretation of noninferiority trials. Ann. Intern. Med. 145, 62–69 (2006).

    Article  PubMed  Google Scholar 

  65. Temple, R. & Ellenberg, S. S. Placebo-controlled trials and active-control trials in the evaluation of new treatments. Part 1: ethical and scientific issues. Ann. Intern. Med. 133, 455–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Tsong, Y., Wang, S. J., Hung, H. M. & Cui, L. Statistical issues on objective, design, and analysis of noninferiority active-controlled clinical trial. J. Biopharm. Stat. 13, 29–41 (2003).

    Article  PubMed  Google Scholar 

  67. Ruperto, N. et al. Is it time to move to active comparator trials in juvenile idiopathic arthritis?: a review of current study designs. Arthritis Rheum. 62, 3131–3139 (2010).

    Article  PubMed  Google Scholar 

  68. Parmar, M. K. et al. Speeding up the evaluation of new agents in cancer. J. Natl Cancer Inst. 100, 1204–1214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. FDA. Critical Path Opportunities Report [online], (2006).

  70. Gallo, P. et al. Viewpoints on the FDA draft adaptive designs guidance from the PhRMA working group. J. Biopharm. Stat. 20, 1115–1124 (2010).

    Article  PubMed  Google Scholar 

  71. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharm. Ther. 69, 89–95 (2001).

  72. Bradley, E. Incorporating biomarkers into clinical trial designs: points to consider. Nat. Biotechnol. 30, 596–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. US National Library of Medicine. I-SPY 2 TRIAL: neoadjuvant and personalized adaptive novel agents to treat breast cancer. ClinicalTrials.gov[online], (2013).

  75. Simon, R. The use of genomics in clinical trial design. Clin. Cancer Res. 14, 5984–5993 (2008).

    Article  PubMed  Google Scholar 

  76. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Onc. 26, 1626–1634 (2008).

    Article  CAS  Google Scholar 

  77. US National Library of Medicine. Pemetrexed or erlotinib as second-line therapy in treating patients with advanced non-small cell lung cancer. ClinicalTrials.gov[online], (2012).

  78. St Clair, E. W. et al. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 50, 3432–3443 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Bejarano, V. et al. Effect of the early use of the anti-tumor necrosis factor adalimumab on the prevention of job loss in patients with early rheumatoid arthritis. Arthritis Rheum. 59, 1467–1474 (2008).

    Article  PubMed  Google Scholar 

  80. Emery, P. et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 372, 375–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Smolen, J. et al. Efficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: the RAPID 2 study. A randomised controlled trial. Ann. Rheum. Dis. 68, 797–804 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Dougados, M. et al. Adding tocilizumab or switching to tocilizumab monotherapy in methotrexate inadequate responders: 24-week symptomatic and structural results of a 2-year randomised controlled strategy trial in rheumatoid arthritis (ACT-RAY). Ann. Rheum. Dis. 72, 43–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Genovese, M. C. et al. Efficacy and safety of the selective co-stimulation modulator abatacept following 2 years of treatment in patients with rheumatoid arthritis and an inadequate response to anti-tumour necrosis factor therapy. Ann. Rheum. Dis. 67, 547–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Smolen, J. S. et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor α inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Lancet 374, 210–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. US National Library of Medicine. SWITCH clinical trial for patients with rheumatoid arthritis who have failed an initial TNF-blocking drug. ClinicalTrials.gov[online], (2010).

  86. Naredo, E. et al. The OMERACT ultrasound task force—status and perspectives. J. Rheumatol. 38, 2063–2067 (2011).

    Article  PubMed  Google Scholar 

  87. Ostergaard, M. et al. Development and preliminary validation of a magnetic resonance imaging joint space narrowing score for use in rheumatoid arthritis: potential adjunct to the OMERACT RA MRI scoring system. J. Rheumatol. 38, 2045–2050 (2011).

    Article  PubMed  Google Scholar 

  88. Strand, V. et al. OMERACT 10 Sharp Symposium: important findings in examination of imaging methods for measurement of joint damage in rheumatoid arthritis. J. Rheumatol. 38, 2009–2013 (2011).

    Article  PubMed  Google Scholar 

  89. La Thangue, N. B. & Kerr, D. J. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Onc. 8, 587–596 (2011).

    Article  CAS  Google Scholar 

  90. Chow, S.C., Corey, R. & Lin, M. On the independence of data monitoring committee in adaptive design clinical trials. J. Biopharm. Stat. 22, 853–867 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Wright for undertaking the literature search that informed this Review. The work of M. H. Buch is funded by a National Institute of Health Research Clinician Scientist Award.

Author information

Authors and Affiliations

Authors

Contributions

M. H. Buch and S. Pavitt researched data for the article, M. H. Buch, S. Pavitt and P. Emery provided substantial contributions to discussions of content, M. H. Buch and S. Pavitt wrote the article with contribution from M. Parmar, and all authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Maya H. Buch.

Ethics declarations

Competing interests

M. H. Buch has acted as a consultant and speaker for Abbott, Bristol-Myers Squibb, Pfizer and Roche-Chugai. P. Emery has acted as a consultant and speaker for Abbott, Bristol-Myers Squibb, Merck Sharpe Dohme, Pfizer, Roche-Chugai and UCB. S. Pavitt and M. Parmar declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buch, M., Pavitt, S., Parmar, M. et al. Creative trial design in RA: optimizing patient outcomes. Nat Rev Rheumatol 9, 183–194 (2013). https://doi.org/10.1038/nrrheum.2013.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing