Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

G protein-coupled receptors in rheumatology

Key Points

  • G protein-coupled receptors (GPCRs) are transmembrane receptor proteins involved in many pathophysiological processes in rheumatic diseases

  • GPCRs include a wide variety of receptors relevant to arthritis pathophysiology, including adenosine, chemokines, kinin B2, complement factor, and protease-activated receptors

  • Methotrexate, the most commonly used drug to treat rheumatoid arthritis, works via the adenosine A2A GPCR signalling pathway

  • Therapeutic approaches that target GPCRs could help in reducing the disease progression of a number of rheumatic diseases

Abstract

G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that allow the transfer of signals across the cell membrane. In addition to their physiological role, GPCRs are involved in many pathophysiological processes including pathways relevant in rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis. Two-thirds of all currently available drugs target GPCRs directly or indirectly. However, the detailed mechanism of GPCR signalling is still unclear. Selective modification of GPCR-dependent signalling cascades to inhibit disease progression in rheumatic diseases is now being investigated. One approach is to use antibodies against ligands activating GPCRs. However, several GPCRs are known to be activated by only one ligand. In this case, targeting the receptor itself is a promising approach. So far, more information is available on GPCR action in RA as compared with OA, and even less information is available for other rheumatic diseases. Additional research on the role of GPCRs involved in the pathophysiology of rheumatic diseases is required to develop specific therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the structure of illustrative GPCRs known to have a role in rheumatic disease.
Figure 2: Schematic diagram of a GPCR with seven TM domains (TM1–TM7), extracellular loops (EL1–EL3) and intracellular loops (ICL1–ICL3).
Figure 3: Schematic diagram of GPCR signalling mediated by the activation of the G protein α subunit.

Similar content being viewed by others

References

  1. Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  Google Scholar 

  2. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    Article  CAS  Google Scholar 

  3. Hutchings, C. J., Koglin, M. & Marshall, F. H. Therapeutic antibodies directed at G protein-coupled receptors. MAbs 2, 594–606 (2010).

    Article  Google Scholar 

  4. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  5. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  6. Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013).

    Article  CAS  Google Scholar 

  7. Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27 (2012).

    Article  CAS  Google Scholar 

  8. Steyaert, J. & Kobilka, B. K. Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011).

    Article  CAS  Google Scholar 

  9. Latek, D., Modzelewska, A., Trzaskowski, B., Palczewski, K. & Filipek, S. G protein-coupled receptors—recent advances. Acta Biochim. Pol. 59, 515–529 (2012).

    Article  CAS  Google Scholar 

  10. Giguere, P. M., Laroche, G., Oestreich, E. A. & Siderovski, D. P. G-protein signaling modulator-3 regulates heterotrimeric G-protein dynamics through dual association with Gβ and Gαi protein subunits. J. Biol. Chem. 287, 4863–4874 (2012).

    Article  CAS  Google Scholar 

  11. Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    Article  CAS  Google Scholar 

  12. Zhao, A. et al. Gαo represses insulin secretion by reducing vesicular docking in pancreatic β-cells. Diabetes 59, 2522–2529 (2010).

    Article  CAS  Google Scholar 

  13. Choudhury, S. R., Bisht, N. C., Thompson, R., Todorov, O. & Pandey, S. Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS One 6, e23361 (2011).

    Article  CAS  Google Scholar 

  14. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Article  CAS  Google Scholar 

  15. Lombardi, M. S. et al. Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J. 13, 715–725 (1999).

    Article  CAS  Google Scholar 

  16. Lombardi, M. S. et al. Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J. Immunol. 166, 1635–1640 (2001).

    Article  CAS  Google Scholar 

  17. Frommer, K. W. et al. Adiponectin-mediated changes in effector cells involved in the pathophysiology of rheumatoid arthritis. Arthritis Rheum. 62, 2886–2899 (2010).

    Article  CAS  Google Scholar 

  18. Penela, P. et al. G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch. Physiol. Biochem. 114, 195–200 (2008).

    Article  CAS  Google Scholar 

  19. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    Article  CAS  Google Scholar 

  20. Kinsel, J. F. & Sitkovsky, M. V. Possible targeting of G protein coupled receptors to manipulate inflammation in vivo using synthetic and natural ligands. Ann. Rheum. Dis. 62 (Suppl. 2), ii22–ii24 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suarez-Almazor, M. E., Belseck, E., Shea, B., Wells, G. & Tugwell, P. Methotrexate for rheumatoid arthritis. Cochrane Database of Systematic Reviews 1998, Issue 2. Art. No.: CD000957. http://dx.doi.org/10.1002/14651858.CD000957.

  22. Wessels, J. A., Huizinga, T. W. & Guchelaar, H. J. Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 47, 249–255 (2008).

    Article  CAS  Google Scholar 

  23. Tian, H. & Cronstein, B. N. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt Dis. 65, 168–173 (2007).

    PubMed  Google Scholar 

  24. Montesinos, M. C. et al. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 48, 240–247 (2003).

    Article  CAS  Google Scholar 

  25. Jacobson, K. A., Balasubramanian, R., Deflorian, F. & Gao, Z. G. G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal. 8, 419–436 (2012).

    Article  CAS  Google Scholar 

  26. David, M. et al. Treatment of plaque-type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J. Eur. Acad. Dermatol. Venereol. 26, 361–367 (2012).

    Article  CAS  Google Scholar 

  27. Murphy, P. M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).

    CAS  PubMed  Google Scholar 

  28. Szekanecz, Z., Vegvari, A., Szabo, Z. & Koch, A. E. Chemokines and chemokine receptors in arthritis. Front. Biosci. (Schol. Ed.) 2, 153–167 (2010).

    Article  Google Scholar 

  29. Neumann, E., Lefevre, S., Zimmermann, B., Gay, S. & Müller-Ladner, U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 16, 458–468 (2010).

    Article  CAS  Google Scholar 

  30. O'Boyle, G., Mellor, P., Kirby, J. A. & Ali, S. Anti-inflammatory therapy by intravenous delivery of non-heparan sulfate-binding CXCL12. FASEB J. 23, 3906–3916 (2009).

    Article  CAS  Google Scholar 

  31. Johnson, Z. et al. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J. Immunol. 173, 5776–5785 (2004).

    Article  CAS  Google Scholar 

  32. Ali, S. et al. A non-glycosaminoglycan-binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein-3) antagonizes chemokine-mediated inflammation. J. Immunol. 175, 1257–1266 (2005).

    Article  CAS  Google Scholar 

  33. Ali, S., Fritchley, S. J., Chaffey, B. T. & Kirby, J. A. Contribution of the putative heparan sulfate-binding motif BBXB of RANTES to transendothelial migration. Glycobiology 12, 535–543 (2002).

    Article  CAS  Google Scholar 

  34. Yellin, M. et al. A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 64, 1730–1739 (2012).

    Article  CAS  Google Scholar 

  35. Hatse, S., Princen, K., Bridger, G., De Clercq, E. & Schols, D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 527, 255–262 (2002).

    Article  CAS  Google Scholar 

  36. Garcia-Vicuna, R. et al. CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheum. 50, 3866–3877 (2004).

    Article  CAS  Google Scholar 

  37. Chen, H. T. et al. Stromal cell-derived factor-1/CXCR4 promotes IL-6 production in human synovial fibroblasts. J. Cell. Biochem. 112, 1219–1227 (2011).

    Article  CAS  Google Scholar 

  38. Matthys, P. et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-γ receptor-deficient mice. J. Immunol. 167, 4686–4692 (2001).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Influence on matrix metalloproteinases 3, 9, and 13 levels after blocking stromal cell derived factor 1/chemokine receptor 4 signaling pathway with AMD3100 [Chinese]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26, 652–656 (2012).

    CAS  PubMed  Google Scholar 

  40. Wei, F. et al. Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res. Ther. 14, R177 (2012).

    Article  CAS  Google Scholar 

  41. Vergunst, C. E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    Article  CAS  Google Scholar 

  42. Fleishaker, D. L. et al. Maraviroc, a chemokine receptor-5 antagonist, fails to demonstrate efficacy in the treatment of patients with rheumatoid arthritis in a randomized, double-blind placebo-controlled trial. Arthritis Res. Ther. 14, R11 (2012).

    Article  CAS  Google Scholar 

  43. Singh, M. D. et al. Elevated expression of the chemokine-scavenging receptor D6 is associated with impaired lesion development in psoriasis. Am. J. Pathol. 181, 1158–1164 (2012).

    Article  CAS  Google Scholar 

  44. Lindberg, M. Use of NSAIDs in rheumatoid arthritis should be limited [Danish]. Ugeskr. Laeger 175, 1039–1041 (2013).

    PubMed  Google Scholar 

  45. Kinsey, S. G., Naidu, P. S., Cravatt, B. F., Dudley, D. T. & Lichtman, A. H. Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice. Pharmacol. Biochem. Behav. 99, 718–725 (2011).

    Article  CAS  Google Scholar 

  46. Laragione, T., Brenner, M., Sherry, B. & Gulko, P. S. CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis. Arthritis Rheum. 63, 3274–3283 (2011).

    Article  CAS  Google Scholar 

  47. Chao, P. Z., Hsieh, M. S., Cheng, C. W., Lin, Y. F. & Chen, C. H. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes. J. Biomed. Sci. 18, 86 (2011).

    Article  CAS  Google Scholar 

  48. Flytlie, H. A. et al. Expression of MDC/CCL22 and its receptor CCR4 in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Cytokine 49, 24–29 (2010).

    Article  Google Scholar 

  49. Bellucci, F. et al. Novel effects mediated by bradykinin and pharmacological characterization of bradykinin B2 receptor antagonism in human synovial fibroblasts. Br. J. Pharmacol. 158, 1996–2004 (2009).

    Article  CAS  Google Scholar 

  50. Leeb-Lundberg, L. M., Marceau, F., Muller-Esterl, W., Pettibone, D. J. & Zuraw, B. L. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57, 27–77 (2005).

    Article  CAS  Google Scholar 

  51. Song, I. H. et al. Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann. Rheum. Dis. 68, 75–83 (2009).

    Article  CAS  Google Scholar 

  52. Meini, S. et al. Fasitibant prevents the bradykinin and interleukin 1β synergism on prostaglandin E2 release and cyclooxygenase 2 expression in human fibroblast-like synoviocytes. Naunyn Schmiedebergs Arch. Pharmacol. 385, 777–786 (2012).

    Article  CAS  Google Scholar 

  53. Sarma, J. V. & Ward, P. A. New developments in C5a receptor signaling. Cell Health Cytoskelet. 4, 73–82 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Fairlie, D. & Sheils, I. A. Treatment of osteoarthritis: EP 1575606 A1 [online], (2005).

  55. Rosen, H., Stevens, R. C., Hanson, M., Roberts, E. & Oldstone, M. B. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu. Rev. Biochem. 82, 637–662 (2013).

    Article  CAS  Google Scholar 

  56. Tsunemi, S. et al. Effects of the novel immunosuppressant FTY720 in a murine rheumatoid arthritis model. Clin. Immunol. 136, 197–204 (2010).

    Article  CAS  Google Scholar 

  57. Zu Heringdorf, D. M., Ihlefeld, K. & Pfeilschifter, J. Pharmacology of the sphingosine-1-phosphate signalling system. Handb. Exp. Pharmacol. 215, 239–253 (2013).

    Article  CAS  Google Scholar 

  58. Graler, M. H. Targeting sphingosine 1-phosphate (S1P) levels and S1P receptor functions for therapeutic immune interventions. Cell. Physiol. Biochem. 26, 79–86 (2010).

    Article  Google Scholar 

  59. Ferrell, W. R., Kelso, E. B., Lockhart, J. C., Plevin, R. & McInnes, I. B. Protease-activated receptor 2: a novel pathogenic pathway in a murine model of osteoarthritis. Ann. Rheum. Dis. 69, 2051–2054 (2010).

    Article  Google Scholar 

  60. Chen, T. L. et al. Anti-inflammatory mechanisms of the proteinase-activated receptor 2-inhibiting peptide in human synovial cells. J. Biomed. Sci. 18, 43 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.N., K.K. and U.M.-L. contributed equally to researching data for article, substantial contribution to discussion of content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Ulf Müller-Ladner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, E., Khawaja, K. & Müller-Ladner, U. G protein-coupled receptors in rheumatology. Nat Rev Rheumatol 10, 429–436 (2014). https://doi.org/10.1038/nrrheum.2014.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing