Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurobiology of gliomas: from cell biology to the development of therapeutic approaches

Key Points

  • Integrated genomic analyses with high-throughput technologies have pointed towards markers that allow for molecular classification of gliomas and for estimations of prognosis. Such markers may become part of the glioma classification and grading system and will also be used for the stratification of clinical trials.

  • The analysis of tumour initiating cells has pointed towards relationships with normal neuroglial stem cells or progenitors. Attempts to target these cells that are crucial for tumour recurrence must not affect normal cells, and the approach therefore requires that the subtle differences between these cells are defined.

  • Modelling glioma in animals with specific genetic backgrounds of conditional oncogene expressions has pointed towards pathways of glioma development. Convergence of such findings with findings relating to normal stem cell biology and signalling pathways during normal neural development, cell proliferation in the nervous system and neuroregeneration, will lead to a better understanding of the real paths that are involved in neuro-oncological progression.

  • The cellular complexity of high grade glial tumours is increasingly believed to be the result of the recruitment of non-glial cell types into the tumour, adding to the complexity of the oncological target structure.

  • The inaccesability of the infiltrative neoplastic cells beyond the bulk of the tumour and behind the blood–brain barrier calls for complex interstitial therapies, including the use of motile cellular therapies with tumour-specific homing capacities, some of which are derived from the characterization of human neuroglial stem cell properties.

Abstract

Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stem cell differentiation and tumorigenesis.
Figure 2: Two illustrative cases of magnetic resonance images showing the invasive nature of gliomas.
Figure 3: Sequential events that cause glioma diversity and that are relevant to clinical tumour characteristics.

Similar content being viewed by others

References

  1. Ludwin, S. K. Reaction of oligodendrocytes and astrocytes to trauma and implantation. A combined autoradiographic and immunohistochemical study. Lab. Invest. 52, 20–30 (1985).

    CAS  PubMed  Google Scholar 

  2. Neuwelt, E. A. et al. Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7, 44–52 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Central Brain Tumor Registry of the United States. Statistical report: primary brain tumors in the United States, 1997–2001 [online] (2004).

  5. Riemenschneider, M. J. & Reifenberger, G. Molecular neuropathology of gliomas. Int. J. Mol. Sci. 10, 184–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Louis, D. N. Molecular pathology of malignant gliomas. Annu. Rev. Pathol. 1, 97–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, C. R. & Perry, A. Glioblastoma. Arch. Pathol. Lab. Med. 131, 397–406 (2007).

    PubMed  Google Scholar 

  8. Reifenberger, G. & Wesseling, P. Molecular diagnostics of brain tumors. Acta Neuropathol. 120, 549–551 (2010).

    Article  PubMed  Google Scholar 

  9. Gotz, M. Glial cells generate neurons--master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist 9, 379–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. McDonald, J. M. et al. The prognostic impact of histology and 1p/19q status in anaplastic oligodendroglial tumors. Cancer 104, 1468–1477 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009). A groundbreaking study in which new molecular markers are linked to the classification of glioma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hartmann, C. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 120, 707–718 (2010).

    Article  PubMed  Google Scholar 

  14. von Deimling, A., Korshunov, A. & Hartmann, C. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol. 21, 74–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Reitman, Z. J. & Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl Cancer Inst. 102, 932–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011). A landmark study in which alteration of the activity of an enzyme that is involved in cellular metabolism is linked to epigenetic gene regulation, with consequences for tumour cell phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Christensen, B. C. et al. DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J. Natl Cancer Inst. 103, 143–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capper, D. et al. Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am. J. Surg. Pathol. 34, 1199–1204 (2010).

    Article  PubMed  Google Scholar 

  19. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006). A landmark study that incorporates gene expression analysis to further subdivide gliomas. The paper contributes to the histopathological and genetic approaches that are already used for glioma classification.

    Article  CAS  PubMed  Google Scholar 

  20. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lei, L. et al. Glioblastoma Models Reveal the Connection between Adult Glial Progenitors and the Proneural Phenotype. PLoS ONE 6, e20041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colman, H. et al. A multigene predictor of outcome in glioblastoma. Neuro Oncol. 12, 49–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Li, A., Bozdag, S., Kotliarov, Y. & Fine, H. A. GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes. BMC Med. Inform. Decis. Mak. 10, 38 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ovaska, K. et al. Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med. 2, 65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, R. et.al. Clonal analysis reveals a hierarchy of self renewing tumor initiating cell types in glioblastoma. Neuro Oncol. Abstr. 10, SC-35 (2008).

    Google Scholar 

  26. Labussiere, M. et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 74, 1886–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Giese, A. et al. Pattern of recurrence following local chemotherapy with biodegradable carmustine (BCNU) implants in patients with glioblastoma. J. Neurooncol. 66, 351–360 (2004).

    Article  PubMed  Google Scholar 

  28. Gilbertson, R. J. & Gutmann, D. H. Tumorigenesis in the brain: location, location, location. Cancer Res. 67, 5579–5582 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cayre, M., Canoll, P. & Goldman, J. E. Cell migration in the normal and pathological postnatal mammalian brain. Prog. Neurobiol. 88, 41–63 (2009). An excellent overview of the cell biology of motile cells in the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kakita, A. & Goldman, J. E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hatten, M. E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Fricker, R. A. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, S. O. & Goldman, J. E. Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J. Neurosci. 23, 4240–4250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacobsen, C. T. & Miller, R. H. Control of astrocyte migration in the developing cerebral cortex. Dev. Neurosci. 25, 207–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Gould, E. How widespread is adult neurogenesis in mammals? Nature Rev. Neurosci. 8, 481–488 (2007).

    Article  CAS  Google Scholar 

  36. Nunes, M. C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nature Med. 9, 439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Canoll, P. & Goldman, J. E. The interface between glial progenitors and gliomas. Acta Neuropathol. 116, 465–477 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Siebzehnrubl, F. A., Reynolds, B. A., Vescovi, A., Steindler, D. A. & Deleyrolle, L. P. The origins of glioma: E Pluribus Unum? Glia 59, 1135–1147 (2011). A comprehensive overview of the current thinking about the relationship between neural stem cells and progenitor cells, and their relationship to possible cells of origin for gliomas.

    Article  CAS  PubMed  Google Scholar 

  39. Venere, M., Fine, H. A., Dirks, P. B. & Rich, J. N. Cancer stem cells in gliomas: identifying and understanding the apex cell in cancer's hierarchy. Glia 59, 1148–1154 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 30, 3489–3498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nature Neurosci. 8, 709–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Corbin, J. G. et al. Regulation of neural progenitor cell development in the nervous system. J. Neurochem. 106, 2272–2287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, L. et al. The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158, 1356–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Carlen, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neurosci. 12, 259–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Andreu-Agullo, C., Morante-Redolat, J. M., Delgado, A. C. & Farinas, I. Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nature Neurosci. 12, 1514–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Muroyama, Y. & Saito, T. Identification of Nepro, a gene required for the maintenance of neocortex neural progenitor cells downstream of Notch. Development 136, 3889–3893 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Stockhausen, M. T., Kristoffersen, K. & Poulsen, H. S. The functional role of Notch signaling in human gliomas. Neuro Oncol. 12, 199–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Puget, S. et al. Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas. J. Clin. Oncol. 27, 1884–1892 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Pierfelice, T. J., Schreck, K. C., Eberhart, C. G. & Gaiano, N. Notch, neural stem cells, and brain tumors. Cold Spring Harb. Symp. Quant. Biol. 73, 367–375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, P. et al. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J. Neurooncol 97, 41–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Shiras, A. et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25, 1478–1489 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Cooper, L. A. et al. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS ONE 5, e12548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fan, X. et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28, 5–16 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, J., Zhang, X. M., Yang, J. C., Ye, Y. B. & Luo, S. Q. γ-secretase inhibitor-I enhances radiosensitivity of glioblastoma cell lines by depleting CD133+ tumor cells. Arch. Med. Res. 41, 519–529 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Fan, X. et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445–7452 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Miele, L., Miao, H. & Nickoloff, B. J. NOTCH signaling as a novel cancer therapeutic target. Curr. Cancer Drug Targets. 6, 313–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Gordon, W. R., Arnett, K. L. & Blacklow, S. C. The molecular logic of Notch signaling-a structural and biochemical perspective. J. Cell Sci. 121, 3109–3119 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Kovall, R. A. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 27, 5099–5109 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Gilbert, C. A., Daou, M. C., Moser, R. P. & Ross, A. H. γ-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res. 70, 6870–6879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pannuti, A. et al. Targeting Notch to target cancer stem cells. Clin. Cancer Res. 16, 3141–3152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004). One of the first reports to introduce the stem cell concept in relation to brain tumours.

    Article  CAS  PubMed  Google Scholar 

  64. Boivin, D. et al. The stem cell marker CD133 (prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry 48, 3998–4007 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Lendahl, U., Zimmerman, L. B. & McKay, R. D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Komitova, M. & Eriksson, P. S. Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci. Lett. 369, 24–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Griguer, C. E. et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE 3, e3655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Soeda, A. et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene 28, 3949–3959 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Clement, V., Dutoit, V., Marino, D., Dietrich, P. Y. & Radovanovic, I. Limits of CD133 as a marker of glioma self-renewing cells. Int. J. Cancer 125, 244–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Laks, D. R. et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27, 980–987 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nishide, K., Nakatani, Y., Kiyonari, H. & Kondo, T. Glioblastoma formation from cell population depleted of Prominin1-expressing cells. PLoS ONE 4, e6869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, R. et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17, 362–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Nagarajan, R. P. & Costello, J. F. Epigenetic mechanisms in glioblastoma multiforme. Semin. Cancer Biol. 19, 188–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522. An important study emphasizing the relevance of epigenetic modification patterns to glioma phenotypes.

  79. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Martinez, R. et al. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4, 255–264 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Morey, L. & Helin, K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 35, 323–332 2010.

    Article  CAS  PubMed  Google Scholar 

  82. Kamnasaran, D. & Guha, A. Expression of GATA6 in the human and mouse central nervous system. Brain Res. Dev. Brain Res. 160, 90–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kamnasaran, D., Qian, B., Hawkins, C., Stanford, W. L. & Guha, A. GATA6 is an astrocytoma tumor suppressor gene identified by gene trapping of mouse glioma model. Proc. Natl Acad. Sci. USA 104, 8053–8058 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2009). This study exemplifies the importance of bioinformatics for the analysis of gene expression data to not only identify relevant single genes but also their functional context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kashyap, V. et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 18, 1093–1108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cerami, E., Demir, E., Schultz, N., Taylor, B. S. & Sander, C. Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 5, e8918. (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Demuth, T. et al. Glioma cells on the run - the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9, 54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rao, J. S. Molecular mechanisms of glioma invasiveness: the role of proteases. Nature Rev. Cancer 3, 489–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Levin, V. A. et al. Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J. Neurooncol. 78, 295–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Tervonen, O., Forbes, G., Scheithauer, B. W. & Dietz, M. J. Diffuse “fibrillary” astrocytomas: correlation of MRI features with histopathologic parameters and tumor grade. Neuroradiology 34, 173–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Burger, P. C., Heinz, E. R., Shibata, T. & Kleihues, P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg. 68, 698–704 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Brennan, C. et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4, e7752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jacques, T. S. et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J. 29, 222–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Dancey, J. & Sausville, E. A. Issues and progress with protein kinase inhibitors for cancer treatment. Nature Rev. Drug Discov. 2, 296–313 (2003).

    Article  CAS  Google Scholar 

  95. Rao, S. K., Edwards, J., Joshi, A. D., Siu, I. M. & Riggins, G. J. A survey of glioblastoma genomic amplifications and deletions. J. Neurooncol. 96, 169–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Jackson, E. L. et al. PDGFR α-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Hambardzumyan, D., Amankulor, N. M., Helmy, K. Y., Becher, O. J. & Holland, E. C. Modeling Adult Gliomas Using RCAS/t-va Technology. Transl. Oncol. 2, 89–95 (2009). A paradigmatic paper that illustrates the power of modelling glioma in transgenic animal models.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Alcantara Llaguno, S. et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15, 45–56 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huse, J. T. & Holland, E. C. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nature Rev. Cancer 10, 319–331 (2010).

    Article  CAS  Google Scholar 

  100. Dahlstrand, J., Lardelli, M. & Lendahl, U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res. Dev. Brain Res. 84, 109–129 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Lassman, A. B., Dai, C., Fuller, G. N., Vickers, A. J. & Holland, E. C. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol. 1, 157–163 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lindberg, N., Kastemar, M., Olofsson, T., Smits, A. & Uhrbom, L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 28, 2266–2275 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Weiss, W. A. et al. Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene 21, 7453–7463 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Abel, T. W. et al. GFAP-Cre-mediated activation of oncogenic K-ras results in expansion of the subventricular zone and infiltrating glioma. Mol. Cancer Res. 7, 645–653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, Y. et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15, 514–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Vries, N. A. et al. Rapid and robust transgenic high-grade glioma mouse models for therapy intervention studies. Clin. Cancer Res. 16, 3431–3441 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Ligon, K. L., Fancy, S. P., Franklin, R. J. & Rowitch, D. H. Olig gene function in CNS development and disease. Glia 54, 1–10 (2006).

    Article  PubMed  Google Scholar 

  109. Read, R. D., Cavenee, W. K., Furnari, F. B. & Thomas, J. B. A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 5, e1000374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Witte, H. T., Jeibmann, A., Klambt, C. & Paulus, W. Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia 11, 882–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Bell, A. J., McBride, S. M. & Dockendorff, T. C. Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly 3, 39–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Neumuller, R. A. et al. Genome-wide analysis of self-renewal in Drosophila Neural stem cells by transgenic RNAi. Cell Stem Cell 8, 580–593 (2010).

    Article  CAS  Google Scholar 

  114. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Faijerson, J. et al. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro. J. Neurosci. Res. 84, 1415–1424 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Eddleston, M. & Mucke, L. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 54, 15–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA 105, 3581–3586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mapara, K. Y., Stevenson, C. B., Thompson, R. C. & Ehtesham, M. Stem cells as vehicles for the treatment of brain cancer. Neurosurg. Clin. N. Am. 18, 71–80, ix (2007).

    Article  PubMed  Google Scholar 

  119. Glass, R. et al. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J. Neurosci. 25, 2637–2646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chirasani, S. R. et al. Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain 133, 1961–1972 (2010).

    Article  PubMed  Google Scholar 

  121. Walzlein, J. H. et al. The antitumorigenic response of neural precursors depends on subventricular proliferation and age. Stem Cells 26, 2945–2954 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Aboody, K. S., Najbauer, J. & Danks, M. K. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 15, 739–752 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Uhl, M. et al. Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochem. Biophys. Res. Commun. 328, 125–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Aboody, K., Capela, A., Niazi, N., Stern, J. H. & Temple, S. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a rosetta stone. Neuron 70, 597–613 (2011). The most comprehensive recent overview of neural stem cell-based therapies for neurological diseases including glioma.

    Article  CAS  PubMed  Google Scholar 

  125. Sasportas, L. S. et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc. Natl Acad. Sci. USA 106, 4822–4827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kinoshita, Y. et al. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol. Res. 32, 429–437 (2010).

    Article  PubMed  Google Scholar 

  127. Menon, L. G. et al. Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27, 2320–2330 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Sonabend, A. M. et al. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Xu, G. et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int. 33, 466–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Vega, E. A., Graner, M. W. & Sampson, J. H. Combating immunosuppression in glioma. Future Oncol. 4, 433–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Liau, L. M. et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11, 5515–5525 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Hau, P. et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17, 201–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Kosztowski, T., Zaidi, H. A. & Quinones-Hinojosa, A. Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Rev. Anticancer Ther. 9, 597–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Birnbaum, T. et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J. Neurooncol. 83, 241–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Weimann, J. M., Charlton, C. A., Brazelton, T. R., Hackman, R. C. & Blau, H. M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA 100, 2088–2093 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Johansson, C. B. et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biol. 10, 575–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Graeber, M. B., Scheithauer, B. W. & Kreutzberg, G. W. Microglia in brain tumors. Glia 40, 252–259 (2002).

    Article  PubMed  Google Scholar 

  138. Brooks, W. H., Markesbery, W. R., Gupta, G. D. & Roszman, T. L. Relationship of lymphocyte invasion and survival of brain tumor patients. Ann. Neurol. 4, 219–224 (1978).

    Article  CAS  PubMed  Google Scholar 

  139. Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R. & Kettenmann, H. The brain tumor microenvironment. Glia 59, 1169–1180 (2010).

    Article  Google Scholar 

  140. Dietrich, J., Han, R., Yang, Y., Mayer-Proschel, M. & Noble, M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol. 5, 22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Dietrich, J., Monje, M., Wefel, J. & Meyers, C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13, 1285–1295 (2008).

    Article  PubMed  Google Scholar 

  142. Muller, F. J. et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 455, 401–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Huang, T. T., Sarkaria, S. M., Cloughesy, T. F. & Mischel, P. S. Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics 6, 500–512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lefranc, F. Editorial: on the road to multi-modal and pluri-disciplinary treatment of glioblastomas. Acta Neurochir. 151, 109–112 (2009).

    Article  PubMed  Google Scholar 

  145. Quant, E. C. & Wen, P. Y. Novel medical therapeutics in glioblastomas, including targeted molecular therapies, current and future clinical trials. Neuroimaging Clin. N. Am. 20, 425–448 (2010).

    Article  PubMed  Google Scholar 

  146. Yamashita, Y. et al. Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts. Neuro Oncol. 9, 20–28 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lonser, R. R. et al. Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J. Neurosurg. 107, 190–197 (2007).

    Article  PubMed  Google Scholar 

  148. Weber, F. et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J. Neurooncol. 64, 125–137 (2003).

    PubMed  Google Scholar 

  149. Kunwar, S. et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J. Clin. Oncol. 25, 837–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Weaver, M. & Laske, D. W. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J. Neurooncol. 65, 3–13 (2003).

    Article  PubMed  Google Scholar 

  151. Sampson, J. H. et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-α and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol. 65, 27–35 (2003).

    Article  PubMed  Google Scholar 

  152. Bidros, D. S., Liu, J. K. & Vogelbaum, M. A. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol. 6, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Iwamoto, F. M. et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73, 1200–1206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Martens, T. et al. Inhibition of glioblastoma growth in a highly invasive nude mouse model can be achieved by targeting epidermal growth factor receptor but not vascular endothelial growth factor receptor-2. Clin. Cancer Res. 14, 5447–5458 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Hong, C. et al. Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc. Natl Acad. Sci. USA 104, 10974–10979 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rutka, J. T. et al. The evolution and application of techniques in molecular biology to human brain tumors: a 25 year perspective. J. Neurooncol. 92, 261–273 (2009).

    Article  PubMed  Google Scholar 

  158. Wurdinger, T. et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14, 382–393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Martin-Villalba, A., Okuducu, A. F. & von Deimling, A. The evolution of our understanding on glioma. Brain Pathol. 18, 455–463 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of M.W. and K.L. in the Hans-Dietrich Herrmann Laboratory for Brain Tumor Biology in the department of Neurosurgery Eppendorf, Germany, has enjoyed the continuous support of the Deutsche Forschungsgemeinschaft (Grants We 928/2-1, 3-1 and 4-1; LA 1300/3-1 and 4-1), the Deutsche Krebshilfe, the Heinrich Bauer Stiftung, the Rickertsen Stiftung, the Monika Kutzner Stiftung, the Roggenbuck-Stiftung and the Bartling Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Westphal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Glioma

Intrinsic tumour of the brain, originating from any kind of glial cell.

Anaplasia

This describes structural and/or functional alterations in cancer cells in which they revert to an less differentiated state.

Glioma grading

A grading of oncological aggressiveness (anaplasia), from well differentiated to anaplastic.

Glioblastoma

According to the World Health Organization system of classification and grading, this is the most anaplastic tumour of astrocytic lineage — astrocytoma grade IV.

Glioma stem cell

Conceptually, a type of cell that represents the cell from which the tumour was generated, that has the capacity for self-renewal and after gross total surgical removal is responsible for repopulating a recurrent tumour.

Stem-like cells

As stem cells should only be referred to as such if they are omnipotent and have a defined role and specification, cells that have similar properties but that are obtained from a tumour are sometimes called stem-like.

Stemness

This describes the degree to which a cell posesses properties such as self renewal, clonogenicity and capacity for multilineage differentiation.

Orthotopic

This describes xenotransplanted tumours or tumour cells that are placed into the tissue environment — the origin of the implanted tumours. This is in contrast to tumour models that use subcutaneous tumour implantation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, M., Lamszus, K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12, 495–508 (2011). https://doi.org/10.1038/nrn3060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3060

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer