Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial redox sensors

Key Points

  • Bacteria have sensitive and specific sensors — involving redox-active cofactors such as haem, flavins, pyridine nucleotides and iron–sulphur clusters, or redox-sensitive amino-acid side chains such as cysteine thiols — that monitor redox signals including oxygen, cytoplasmic redox state or the production of reactive oxygen species. Redox sensors control the processes that function to maintain redox homeostasis, usually at the level of transcription. This review explains the systems that have evolved to allow bacteria to sense and respond to different redox signals.

  • Thiol-based sensor function is reviewed. Typically, these sensors use cysteine modification to sense redox alterations. Examples include OxyR in Escherichia coli, the σR-RsrA system in Streptomyces coelicolor, CrtJ and the RegB–RegA in Rhodobacter sphaeroides, and OhrR from Bacillus subtilis.

  • The importance of Fe–S proteins in redox sensing is illustrated by the functions of several redox sensors from E. coli that use oxidation of Fe–S clusters to monitor the redox status of cell compartments and the environment to produce appropriate transcriptional responses — these include SoxR, Fnr, aconitase and IcsR.

  • Haem also functions to sample redox states in bacteria — examples include FixL in Sinorhizobium meliloti and Dos in E. coli, both of which function as oxygen sensors that coordinate the haem cofactor to a PAS (PER–ARNT–SIM) fold. By contrast, in B. subtilis the haem sensor is coordinated to a globin fold in the HemAT protein, which controls flagellar rotation in response to oxygen tension in chemotaxis.

  • Other redox sensors use the coenzymes FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which perceive redox states owing to their electron-carrying capacity. Those redox sensors reviewed here include the nitrogen-fixation regulation genes in Klebsiella pneumoniae, S. meliloti and Azotobacter vinelandii, and Aer, which mediates regulation of aerotaxis in E. coli.

  • Similarly, NAD cofactors can shuttle electrons and are used by regulators described in this review. Examples of such regulators include the Rex repressor in S. coelicolor, which monitors NAD status and respiratory activity according to oxygen availability and seems to be conserved among Gram-positive bacteria, and CbbR from the chemoautotroph Xanthobacter flavus, which samples whether there is enough reducing power available for carbon fixation.

  • Finally, the authors address the role of quinones in redox sensing. These cofactors might oxidize cysteines directly in the ArcB–ArcA system of E. coli that regulates gene expression under microaerobic and anaerobic growth conditions.

Abstract

Redox reactions pervade living cells. They are central to both anabolic and catabolic metabolism. The ability to maintain redox balance is therefore vital to all organisms. Various regulatory sensors continually monitor the redox state of the internal and external environments and control the processes that work to maintain redox homeostasis. In response to redox imbalance, new metabolic pathways are initiated, the repair or bypassing of damaged cellular components is coordinated and systems that protect the cell from further damage are induced. Advances in biochemical analyses are revealing a range of elegant solutions that have evolved to allow bacteria to sense different redox signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thiol-based redox switches.
Figure 2: Iron–sulphur cluster-based switches.
Figure 3: Haem-based switches.
Figure 4: Aer — a flavin cofactor-based redox sensor.
Figure 5: Comparison between the Rex and ArcB–ArcA redox sensors.

Similar content being viewed by others

References

  1. Bauer, C., Elsen, S. & Bird, T. H. Mechanisms for redox control of gene expression. Annu. Rev. Microbiol. 53, 495–523 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Storz, G. & Zheng, M. in Bacterial Stress Responses (eds Storz, G. & Hengge-Aronis, R.) 47–59 (ASM, Washington DC, 2000).

    Google Scholar 

  3. Paget, M. S. B. & Buttner, M. J. Thiol-based redox switches Annu. Rev. Genet. 37, 91–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kiley, P. J. & Beinert, H. The role of Fe–S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6, 181–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Patschowski, T., Bates, D. M. & Kiley, P. J. in Bacterial Stress Responses (eds Storz, G. & Hengge-Aronis, R.) 61–78 (ASM, Washington DC, 2000).

    Google Scholar 

  6. Zheng, M. et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183, 4562–4570 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Storz, G., Tartaglia, L. A. & Ames, B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Kullik, I., Toledano, M. B., Tartaglia, L. A. & Storz G. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J. Bacteriol. 177, 1275–1284 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J. & Stamler, J. S. Nitrosative stress: activation of the transcription factor OxyR. Cell 86, 719–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Mukhopadhyay, P., Zheng, M., Bedzyk, L. A., LaRossa, R. A. & Storz, G. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl Acad. Sci. USA 101, 745–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, M., Åslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998). Together with reference 13, this is the first description of a transcription factor being regulated by reversible disulphide-bond formation.

    Article  CAS  PubMed  Google Scholar 

  12. Tao, K. In vivo oxidation–reduction kinetics of OxyR, the transcriptional activator for an oxidative stress-inducible regulon in Escherichia coli. FEBS Lett. 457, 90–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Åslund, F., Zheng, M., Beckwith, J. & Storz, G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl Acad. Sci. USA 96, 6161–6165 (1999).

    Article  PubMed  Google Scholar 

  14. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001). Good structural evidence for the role of reversible disulphide-bond formation in the modulation of OxyR activity.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, S. O. et al. OxyR: a molecular code for redox-related signaling. Cell 109, 383–396 (2002). Controversial description of various redox-modified forms of OxyR with apparently different regulatory properties.

    Article  CAS  PubMed  Google Scholar 

  16. Poole, L. B., Karplus, P. A. & Claiborne, A. Protein sulfenic acids in redox signalling. Annu. Rev. Pharmacol. Toxicol. 44, 325–347 (2004). An excellent critical review on the subject.

    Article  CAS  PubMed  Google Scholar 

  17. Paget, M. S. B., Kang, J. G., Roe, J. H. & Buttner, M. J. σR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A32 . EMBO J. 17, 5776–5782 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, J. -G. et al. RsrA, an anti-sigma factor regulated by redox change. EMBO J. 18, 4292–4298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manganelli, R. et al. Role of the extracytoplasmic-function sigma factor σH in Mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45, 365–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Paget, M. S. B., Molle, V., Cohen, G., Aharonowitz, Y. & Buttner, M. J. Defining the disulphide stress response in Streptomyces coelicolor A32: identification of the σR regulon. Mol. Microbiol. 42, 1007–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Paget, M. S. B. et al. Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch. Mol. Microbiol. 39, 1036–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Li, W. et al. The role of zinc in the disulfide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J. Mol. Biol. 333, 461–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kiley, P. J. & Kaplan, S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol. Rev. 52, 50–69 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bauer, C., Elsen, S., Swem, L. R., Swem, D. L. & Masuda, S. Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos. Trans. R. Soc. Lond. B 358, 147–153 (2003)

    Article  CAS  Google Scholar 

  25. Masuda, S. et al. Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc. Natl Acad. Sci. USA 99, 7078–7083 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Zhulin, I. B., Taylor, B. L. & Dixon R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331–333 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Masuda, S. & Bauer, C. E. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110, 613–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Sganga, M. W. & Bauer, C. E. Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell 68, 945–954 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Swem, L. R. et al. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J. Mol. Biol. 309, 121–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Romagnoli, S., Packer, H. L. & Armitage, J. P. Tactic responses to oxygen in the phototrophic bacterium Rhodobacter sphaeroides WS8N. J. Bacteriol. 184, 5590–5598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swem, L. R. et al. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J. 22, 4699–4708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh, J. I. & Kaplan, S. Redox signaling: globalization of gene expression. EMBO J. 19, 4237–4247 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oh, J. I., Ko, I. J. & Kaplan S. Reconstitution of the Rhodobacter sphaeroides cbb3-PrrBA signal transduction pathway in vitro. Biochemistry 43, 7915–7923 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Fuangthong, M. & Helmann, J. D. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl Acad. Sci. USA 99, 6690–6695 (2002). A clear description of a redox sensor that is modulated by reversible oxidation of a single cysteine to sulphenic acid.

    Article  CAS  PubMed  Google Scholar 

  35. Pomposiello, P. J., Bennik, M. H. J. & Demple, B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol. 183, 3890–3902 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demple, B., Ding, H. & Jorgensen, M. Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. Methods Enzymol. 348, 355–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hidalgo, E., Bollinger, J. M., Bradley, J. M., Walsh, C. T. & Demple, B. Binuclear [2Fe–2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J. Biol. Chem. 270, 20908–20914 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, J., Dunham, W. R. & Weiss, B. Overproduction and physical characterization of SoxR, a [2Fe-2S] protein that governs an oxidative stress response regulon in Escherichia coli. J. Biol. Chem. 270, 10323–10327 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Ding, H. & Demple, B. In vivo kinetics of a redox-regulated transcriptional switch. Proc. Natl Acad. Sci. USA 94, 8445-8449 (1997). Elegant use of electron paramagnetic resonance spectroscopy to follow the redox-switching process of the SoxR protein in vivo.

    Google Scholar 

  40. Koo, M. S. et al. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22, 2614–2622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding, H., Hidalgo, E. & Demple, B. The redox state of the [2Fe–2S] clusters in SoxR protein regulates its activity as a transcription factor. J. Biol. Chem. 271, 33173–33175 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Ding, H. & Demple, B. Direct nitric oxide signal transduction via nitrosylation of iron–sulfur clusters in the SoxR transcription activator. Proc. Natl Acad. Sci. USA 97, 5146–5150 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Guest, J. R., Green, J., Irvine, A. S. & Spiro, S. in Regulation and Gene Expression in Escherichia coli (eds Lin, E. C. C. & Lynch, A. S.) 317–342 (R. G. Landes & Co, Austin, Texas, 1996).

    Book  Google Scholar 

  44. Unden, G. & Bongaerts, J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation. Biochim. Biophys. Acta 1320, 217–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Gonzalez, R. et al. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol. Prog. 19, 612–623 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Salmon, K. et al. Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J. Biol. Chem. 278, 29837–29855 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Corvet, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  Google Scholar 

  48. Becker, S., Holighaus, G., Gabrielczyk, T. & Unden, G. O2 as the regulatory signal for FNR-dependent gene expression in Escherichia coli. J. Bacteriol. 178, 4515–4521 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crack, J., Green, J. & Thomson, A. J. Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J. Biol. Chem. 279, 9278–9286 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Jordan, P. A., Thomson, A. J., Ralph, E. T., Guest, J. R. & Green, J. FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett. 416, 349–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Khoroshilova, N., Popescu, C., Munck, E., Beinert, H. & Kiley, P. J. Iron–sulphur disassembly in the FNR protein of Escherichia coli by O2: [4Fe–4S] to [2Fe–2S] conversion with loss of biological activity. Proc. Natl Acad. Sci. USA 94, 6087–6092 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Lazazzera, B. A., Bates, D. & Kiley, P. J. The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev. 7, 1993–2005 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Lazazzera, B. A., Beinert, H., Khoroshilova, N., Kennedy, M. C. & Kiley, P. J. DNA-binding and dimerization of the Fe–S containing FNR protein Escherichia coli are regulated by oxygen. J. Biol. Chem. 271, 2762–2768 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Popescu, C. V., Bates, D. M., Beinert, H., Munck, E. & Kiley, P. J. Mössbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc. Natl Acad. Sci. USA 95, 13431–13435 (1998). This study shows that the Fnr [4Fe–4S]2+ cluster is converted to a [2Fe–2S]2+ cluster on exposure to oxygen in vivo using 57Fe Mössbauer spectroscopy.

    Article  CAS  PubMed  Google Scholar 

  55. Scott, C. & Green, J. Miscoordination of the iron–sulfur clusters of the anaerobic transcription factor FNR allows simple repression but not activation. J. Biol. Chem. 277, 1749–1754 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Moore, L. J. & Kiley, P. J. Characterization of the dimerization domain in the FNR transcription factor. J. Biol. Chem. 276, 45744–45750 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Green, J., Trageser, M., Six, S., Unden, G. & Guest, J. R. Characterization of the FNR protein of Escherichia coli, an iron binding transcriptional regulator. Proc. R. Soc. Lond. B. 244, 137–144 (1991).

    Article  CAS  Google Scholar 

  58. Sutton, V. R. et al. Superoxide destroys the [2Fe–2S]2+ cluster of FNR from Escherichia coli. Biochemistry 43, 791–798 (2004). This paper shows that superoxide, a by-product of aerobic metabolism, can destroy the Fnr [2Fe–2S]2+ cluster in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  59. Bates, D. M. et al. Substitution of leucine 28 with histidine in the Escherichia coli transcription factor FNR results in increased stability of the [4Fe–4S]2+ cluster to oxygen. J. Biol. Chem. 275, 6234–6240 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Schwartz, C. J. et al. IscR, an Fe–S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe–S cluster assembly proteins. Proc. Natl Acad. Sci. USA 98, 14895–14900 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Green, J. et al. Reconstitution of the [4Fe–4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. Biochem. J. 316, 887–892 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khoroshilova, N., Beinert, H. & Kiley, P. J. Association of a polynuclear iron–sulfur center with a mutant FNR protein enhances DNA-binding. Proc. Natl Acad. Sci. USA 92, 2499–2505 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Cruz-Ramos, H. et al. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 21, 3235–3244 (2002). The Fe–S cluster of Fnr is shown to react with nitric oxide with concomitant loss of the ability to regulate transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Poole, R. K. & Hughes, M. N. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36, 775–783 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Alen, C. & Sonenshein, A. L. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl Acad. Sci. USA 96, 10412–10417 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Tang, Y. & Guest, J. R. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145, 3069–3079 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Tang, Y., Quail, M. A., Artymiuk, P. J., Guest, J. R. & Green, J. Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression. Microbiology 148, 1027–1037 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tang, Y., Guest, J. R., Artymiuk, P. J., Read, R. C. & Green, J. Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol. Microbiol. 51, 1817–1826 (2004). Aconitase is shown to have a global regulatory function.

    Article  CAS  PubMed  Google Scholar 

  69. Beinert, H., Kennedy, M. C. & Stout, C. D. Aconitase as iron–sulfur protein, enzyme and iron-regulatory protein. Chem. Rev. 96, 2335–2373 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Williams, C. H. et al. E. coli aconitase B structure reveals a HEAT-like domain with implication for protein–protein recognition. Nature Struct. Biol. 9, 447–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Cunningham, L., Gruer, M. J. & Guest, J. R. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology 143, 3795–3805 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Gardner, P. R. & Fridovich, I. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 19328–19333 (1991).

    CAS  PubMed  Google Scholar 

  73. Gardner, P. R. & Fridovich, I. Inactivation-reactivation of aconitase in Escherichia coli: a sensitive measure of superoxide radical. J. Biol. Chem. 267, 8757–8763 (1992).

    CAS  PubMed  Google Scholar 

  74. Bradbury, A. J., Gruer, M. J., Rudd, K. E. & Guest, J. R. The second aconitase (AcnB) of Escherichia coli. Microbiology 142, 389–400 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Gardner, P. R., Costantino, G., Szabo, C. & Salzman, A. L. Nitric oxide sensitivity of the aconitases. J. Biol. Chem. 272, 25071–25076 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Varghese, S., Tang, Y. & Imlay, J. A. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J. Bacteriol. 185, 221–230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frazzon, J. & Dean, D. R. Feedback regulation of iron–sulfur cluster biosynthesis. Proc. Natl Acad. Sci. USA 98, 14751–14753 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Schwartz, C. J., Djaman, O., Imlay, J. A. & Kiley, P. J. The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 9009–9014 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Fischer, H. M. Genetic-regulation of nitrogen fixation in Rhizobia. Microbiol. Rev. 58, 352–386 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gong, W. M. et al. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl Acad. Sci. USA 95, 15177–15182 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Gilles-Gonzalez, M. A., Gonzalez, G. & Perutz, M. F. Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry 34, 232–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Delgado-Nixon, V. M., Gonzalez, G. & Gilles-Gonzalez, M. A. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39, 2685–2691 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Gonzalez, G. et al. Nature of the displaceable heme axial residue in the EcDos protein, a heme-based sensor from Escherichia coli. Biochemistry 41, 8414–8421 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Sato, A. et al. Stationary and time-resolved resonance Raman spectra of His77 and Met95 mutants of the isolated heme domain of a direct oxygen sensor from Escherichia coli. J. Biol. Chem. 277, 32650–32658 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Liebl, U. et al. Ligand binding dynamics to the heme domain of the oxygen sensor Dos from Escherichia coli. Biochemistry 42, 6527–6535 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Sasakura, Y. et al. Characterization of a direct oxygen sensor heme protein from Escherichia coli. J. Biol. Chem. 277, 23821–23827 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Yoshimura, T., Sagami, I., Sasakura, Y. & Shimizu T. Relationships between heme incorporation, tetramer formation, and catalysis of a heme-regulated phosphodiesterase from Escherichia coli: a study of deletion and site-directed mutants. J. Biol. Chem. 278, 53105–53111 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Park, H. J., Suquet, C., Satterlee, J. D. & Kang, C. H. Insights into signal transduction involving PAS domain oxygen-sensing heme proteins from the X-ray crystal structure of Escherichia coli Dos heme domain (EcDosH). Biochemistry 43, 2738–2746 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Kurokawa, H. et al. A redox-controlled molecular switch revealed by the crystal structure of a bacterial herme PAS sensor. J. Biol. Chem. 279, 20186–20193 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Hou, S. et al. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403, 540–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Hou, S. B. et al. Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria. Proc. Natl Acad. Sci. USA 98, 9353–9358 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, W. & Phillips, G. N. Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry. Structure 11, 1097–1110 (2003). Analysis of X-ray structures of HemAT indicates that disruption of symmetry is important in controlling the chemotactic response of B. subtilis in oxygen gradients.

    Article  CAS  PubMed  Google Scholar 

  93. Martinez-Argudo, I., Little, R., Shearer, N., Johnson, P. & Dixon, R. The NifL–NifA system: a multidomain transcriptional regulatory complex that integrates environmental signals. J. Bacteriol. 186, 601–610 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hill, S., Austin, S., Eydmann, T., Jones, T. & Dixon, R. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proc. Natl Acad. Sci. USA 93, 2143–2148 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Schmitz, R., He, L. & Kustu, S. Iron is required to relieve inhibitory effects on NifL on transcriptional activation by NifA in Klebsiella pneumoniae. J. Bacteriol. 178, 4679–4687 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Macheroux, P. et al. Electron donation to the flavoprotein NifL, a redox sensing transcription regulator. Biochem. J. 332, 413–419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grabbe, R., Klopprogge, K. & Schmitz, R. A. Fnr is required for NifL-dependent oxygen control of nif gene expression in Klebsiella pneumoniae. J. Bacteriol. 183, 1385–1393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grabbe, R. & Schmitz R. A. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool. Eur. J. Biochem. 270, 1555–1566 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Rebbapragada, A. et al. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behaviour. Proc. Natl Acad. Sci. USA 94, 10541–10546 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Bibikov, S. I., Barnes, L. A., Gitin, Y. & Parkinson, J. S. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5830–5835 (2000)

    Article  CAS  PubMed  Google Scholar 

  101. Repik, A. et al. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol. 36, 806–816 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wimpenny, J. W. & Firth, A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J. Bacteriol. 111, 24–32 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. de Graef, M. R., Alexeeva, S., Snoep, J. L. & Teixeira de Mattos, M. J. The steady-state internal redox state (NADH/NAD+) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181, 2351–2357 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Woodmansee, A. N. & Imlay, J. A. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J. Biol. Chem. 277, 34055–34066 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Brekasis, D. & Paget, M. S. B. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A32 . EMBO J. 22, 4856–4865 (2003). The first description of Rex, a sensor of cellular NADH/NAD+ redox state that is widespread in Gram-positive bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rossmann, M. G., Liljas, A., Brändén, C. -I. & Banaszak, L. J. in The Enzymes Vol 11: Oxidation Reduction Part A (ed. Boyer, P. D.) 61–102 (Academic, New York, 1975).

    Google Scholar 

  107. Lesk, A. M. NAD-binding domains of dehydrogenases. Curr. Opin. Struct. Biol. 5, 775–783 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. van Keulen, G., Girbal, L., van den Bergh, E. R., Dijkhuizen, L. & Meijer, W. G. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J. Bacteriol. 180, 1411–1417 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Georgellis, D., Lynch, A. S. & Lin, E. C. C. In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli. J. Bacteriol. 179, 5429–5435 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kwon, O., Georgellis, D. & Lin, E. C. C. Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J. Bacteriol. 182, 3858–3862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, X. & De Wulf, P. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J. Biol. Chem. 279, 12588–12597 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Iuchi, S. & Lin, E. C. C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl Acad. Sci. USA 85, 1888–1892 (1988).

    Article  CAS  PubMed  Google Scholar 

  113. Georgellis, D., Kwon, O. & Lin, E. C. C. Quinones as the redox signal for the arc two-component system of bacteria. Science 292, 2314–2316 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Malpica, R., Franco, B., Rodriguez, C. & Georgellis, D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl Acad. Sci. USA 101, 13318–13323 (2004). Quinones stimulate formation of intermolecular disulphide bonds in ArcB, which inhibit its kinase activity under aerobic conditions.

    Article  CAS  PubMed  Google Scholar 

  115. Georgellis, D., Kwon, O. & Lin, E. C. C. Amplification of signalling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules. J. Biol. Chem. 274, 35950–35954 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Rodriguez, C., Kwon, O. & Georgellis, D. Effect of D-lactate on the physiological activity of the ArcB sensor kinase in Escherichia coli. J. Bacteriol. 186, 2085–2090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bock, A. & Gross, R. The unorthodox histidine kinases BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur. J. Biochem. 269, 3479–3484 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Steffen, P., Goyard, S. & Ullmann, A. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J. 15, 102–109 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Messner, K. R. & Imlay, J. A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274, 10119–10128 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Imlay, J. A. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microbial Phys. 46, 111–153 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the author's laboratories is funded by the UK Biotechnology ad Biological Science Research Council and by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

σR

AcnA

AcnB

Aer

Arc

CbbR

Fnr

HemAT

NifA

NifL

OhrR

OxyR

Rex

SoxR

Glossary

REGULON

A group of transcriptional units or operons that are coordinately controlled by a regulator.

ANTIOXIDANT

A chemical that combines with free radicals and/or other chemicals that release free radicals that would otherwise damage molecules including DNA, RNA, lipids (fats) and proteins, and abnormally oxidize them.

FENTON REACTION

The reaction between Fe2+ and hydrogen peroxide that yields the highly reactive hydroxyl radical.

SIGMA FACTOR

The subunit of RNA polymerase holoenzyme that is required for promoter sequence recognition and the ability to initiate transcription.

ANTI-SIGMA FACTORS

A negative transcriptional regulator that functions by binding to a sigma factor and preventing its activity. An anti-anti-sigma factor, in turn, counteracts the action of an anti-sigma factor.

TWO-COMPONENT SYSTEM

A signal-transduction system using two components — a histidine protein kinase (HPK) and a response regulator — to sense and respond to external stimuli. HPK autophosphorylate at a histidyl residue following stimulation and transfer that phosphoryl group to a cognate response regulator at its aspartyl residue to induce a conformational change in the regulatory domain, which in turn activates an associated domain.

CUBIC

Refers to the symmetry of a cluster, where cubic is three dimensional and planar is two dimensional.

PLANAR

Two-dimensional arrangement of molecules in a motif.

APO

Inactive form of a regulatory protein or enzyme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J., Paget, M. Bacterial redox sensors. Nat Rev Microbiol 2, 954–966 (2004). https://doi.org/10.1038/nrmicro1022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing