Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Untargeted metabolomics links glutathione to bacterial cell cycle progression

Abstract

Cell cycle progression requires the coordination of cell growth, chromosome replication and division. Consequently, a functional cell cycle must be coupled with metabolism. However, direct measurements of metabolome dynamics remained scarce, in particular in bacteria. Here, we describe an untargeted metabolomics approach with synchronized Caulobacter crescentus cells to monitor the relative abundance changes of ~400 putative metabolites as a function of the cell cycle. While the majority of metabolite pools remain homeostatic, ~14% respond to cell cycle progression. In particular, sulfur metabolism is redirected during the G1–S transition, and glutathione levels periodically change over the cell cycle, with a peak in late S phase. A lack of glutathione perturbs cell size by uncoupling cell growth and division through dysregulation of KefB, a K+/H+ antiporter. Overall, we here describe the effects of the C. crescentus cell cycle progression on metabolism, and in turn relate glutathione and potassium homeostasis to timely cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Untargeted dynamic metabolomics to monitor cell cycle progression.
Fig. 2: Global metabolic response to cell cycle progression.
Fig. 3: Cell cycle dependency of sulfur metabolism and glutathione.
Fig. 4: Loss of glutathione decouples growth from cell cycle progression.
Fig. 5: Lack of glutathione leads to kefB-dependent cell division defects.

Similar content being viewed by others

Data availability

The metabolomics dataset generated during this study is available through a MetaboLights database entry (https://www.ebi.ac.uk/metabolights/) with the study identifier MTBLS1402. Other data that support the findings of this study are available from the corresponding authors upon request.

Code availability

The computer code for the described ‘pairfinder’ workflow is deposited at https://pypi.org/project/idms-pairfinder-2/.

References

  1. Cai, L. & Tu, B. P. Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 28, 59–87 (2012).

    CAS  PubMed  Google Scholar 

  2. Wang, J. D. & Levin, P. A. Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 7, 822–827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, I. H. & Finkel, T. Metabolic regulation of the cell cycle. Curr. Opin. Cell Biol. 25, 724–729 (2013).

    CAS  PubMed  Google Scholar 

  4. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98 (1977).

    CAS  PubMed  Google Scholar 

  5. Boye, E. & Nordstrom, K. Coupling the cell cycle to cell growth. EMBO Rep. 4, 757–760 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, H. et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546, 426–430 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ewald, J. C., Kuehne, A., Zamboni, N. & Skotheim, J. M. The yeast cyclin-dependent kinase routes carbon fluxes to fuel cell cycle progression. Mol. Cell 62, 532–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Saqcena, M. et al. Amino acids and mTOR mediate distinct metabolic checkpoints in mammalian G1 cell cycle. PLoS ONE 8, e74157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Margolin, W. & Bernander, R. How do prokaryotic cells cycle? Curr. Biol. 14, R768–R770 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jensen, R. B., Wang, S. C. & Shapiro, L. A moving DNA replication factory in Caulobacter crescentus. EMBO J. 20, 4952–4963 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Iba, H., Fukuda, A. & Okada, Y. Rate of major protein-synthesis during cell-cycle of Caulobacter crescentus. J. Bacteriol. 135, 647–655 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beaufay, F. et al. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J. 34, 1786–1800 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Irnov, I. et al. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of ɑ-ketoglutarate. PLoS Genet. 13, 1–27 (2017).

    Google Scholar 

  14. Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Campos, M. et al. A constant size extension drives bacterial cell size homeostasis. Cell 159, 1433–1446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ronneau, S., Petit, K., De Bolle, X. & Hallez, R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat. Commun. 7, 11423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiaverotti, T. A., Parker, G., Gallant, J. & Agabian, N. Conditions that trigger guanosine tetraphosphate accumulation in Caulobacter crescentus. J. Bacteriol. 145, 1463–1465 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boutte, C. C. & Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Westfall, C. S. & Levin, P. A. Comprehensive analysis of central carbon metabolism illuminates connections between nutrient availability, growth rate, and cell morphology in Escherichia coli. PLoS Genet. 14, e1007205 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Radhakrishnan, S. K., Pritchard, S. & Viollier, P. H. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev. Cell 18, 90–101 (2010).

    CAS  PubMed  Google Scholar 

  21. Lori, C. et al. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523, 236–U278 (2015).

    CAS  PubMed  Google Scholar 

  22. Fang, G. et al. Transcriptomic and phylogenetic analysis of a bacterial cell cycle reveals strong associations between gene co-expression and evolution. BMC Genomics 14, 450 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Laub, M. T. et al. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    CAS  PubMed  Google Scholar 

  24. Schrader, J. M. et al. Dynamic translation regulation in Caulobacter cell cycle control. Proc. Natl Acad. Sci. USA 113, E6859–E6867 (2016).

    CAS  PubMed  Google Scholar 

  25. Zhou, B. et al. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLoS Genet. 11, 1–17 (2015).

    CAS  Google Scholar 

  26. Wu, L. et al. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal. Biochem. 336, 164–171 (2005).

    CAS  PubMed  Google Scholar 

  27. Bueschl, C. et al. MetExtract II: a software suite for stable isotope-assisted untargeted metabolomics. Anal. Chem. 89, 9518–9526 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, L. et al. Peak annotation and verification engine for untargeted LC-MS metabolomics. Anal. Chem. 91, 1838–1846 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Kind, T. & Fiehn, O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7, 234 (2006).

    PubMed  PubMed Central  Google Scholar 

  32. Lai, Z. J. et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 15, 53–56 (2018).

    CAS  PubMed  Google Scholar 

  33. Schrader, J. M. & Shapiro, L. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle. J. Vis. Exp. 98, e52633 (2015).

    Google Scholar 

  34. Abel, S. et al. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle. PLoS Genet. 9, e1003744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Domian, I. J., Quon, K. C. & Shapiro, L. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415–424 (1997).

    CAS  PubMed  Google Scholar 

  36. Christen, M. et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328, 1295–1297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen, K. F., Dandanell, G., Hove-Jensen, B. & Willemoes, M. Nucleotides, nucleosides, and nucleobases. EcoSal Plus 3, 1–68 (2008).

    Google Scholar 

  38. Sekowska, A., Kung, H. F. & Danchin, A. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J. Mol. Microbiol. Biotechnol. 2, 145–177 (2000).

    CAS  PubMed  Google Scholar 

  39. Gonzalez, D. et al. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res. 42, 3720–3735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Masip, L., Veeravalli, K. & Georgioui, G. The many faces of glutathione in bacteria. Antioxid. Redox Signal. 8, 753–762 (2006).

    CAS  PubMed  Google Scholar 

  41. Kosower, N. S. & Kosower, E. M. The glutathione status of cells. Int. Rev. Cytol. 54, 109–160 (1978).

    CAS  PubMed  Google Scholar 

  42. Smirnova, G. V. & Oktyabrsky, O. N. Glutathione in bacteria. Biochem. (Mosc.) 70, 1199–1211 (2005).

    CAS  Google Scholar 

  43. Buescher, J. M. et al. A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartl, J., Kiefer, P., Meyer, F. & Vorholt, J. A. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat. Microbiol. 2, 17073 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schriek, U. & Schwenn, J. D. Properties of the purified APS-kinase from Escherichia coli and Saccharomyces cerevisiae. Arch. Microbiol. 145, 32–38 (1986).

    CAS  PubMed  Google Scholar 

  46. Lillig, C. H. et al. Redox regulation of 3’-phosphoadenylylsulfate reductase from Escherichia coli by glutathione and glutaredoxins. J. Biol. Chem. 278, 22325–22330 (2003).

    CAS  PubMed  Google Scholar 

  47. Apontoweil, P. & Berends, W. Glutathione biosynthesis in Escherichia coli K-12—properties of enzymes and regulation. Biochim. Biophys. Acta 399, 1–9 (1975).

    CAS  PubMed  Google Scholar 

  48. Meisenzahl, A. C., Shapiro, L. & Jenal, U. Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. J. Bacteriol. 179, 592–600 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller, S. et al. Identification of an ancillary protein, YabF, required for activity of the KefC glutathione-gated potassium efflux system in Escherichia coli. J. Bacteriol. 182, 6536–6540 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ness, L. S. & Booth, I. R. Different foci for the regulation of the activity of the KefB and KefC glutathione-gated K+ efflux systems. J. Biol. Chem. 274, 9524–9530 (1999).

    CAS  PubMed  Google Scholar 

  51. Booth, I. R., Epstein, W., Giffard, P. M. & Rowland, G. C. Roles of the trkB and trkC gene products of Escherichia coli in K+ transport. Biochimie 67, 83–89 (1985).

    CAS  PubMed  Google Scholar 

  52. Roosild, T. P. et al. Mechanism of ligand-gated potassium efflux in bacterial pathogens. Proc. Natl Acad. Sci. USA 107, 19784–19789 (2010).

    CAS  PubMed  Google Scholar 

  53. Meury, J. & Kepes, A. Glutathione and the gated potassium channels of Escherichia coli. EMBO J. 1, 339–343 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Murata, K. & Kimura, A. Overproduction of glutathione and its derivatives by genetically engineered microbial cells. Biotechnol. Adv. 8, 59–96 (1990).

    CAS  PubMed  Google Scholar 

  55. Kaczmarczyk, A., Vorholt, J. A. & Francez-Charlot, A. Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl. Environ. Microbiol. 79, 6795–6802 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grunenfelder, B. et al. Proteomic analysis of the bacterial cell cycle. Proc. Natl Acad. Sci. USA 98, 4681–4686 (2001).

    CAS  PubMed  Google Scholar 

  57. Ahn, E. et al. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle. Mol. Syst. Biol. 13, 953 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Tu, B. P. et al. Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl Acad. Sci. USA 104, 16886–16891 (2007).

    CAS  PubMed  Google Scholar 

  59. Murray, D. B., Beckmann, M. & Kitano, H. Regulation of yeast oscillatory dynamics. Proc. Natl Acad. Sci. USA 104, 2241–2246 (2007).

    CAS  PubMed  Google Scholar 

  60. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–1158 (2005).

    CAS  PubMed  Google Scholar 

  61. Bohrer, A. S. & Takahashi, H. Compartmentalization and regulation of sulfate assimilation pathways in plants. Int. Rev. Cell Mol. Biol. 326, 1–31 (2016).

    CAS  PubMed  Google Scholar 

  62. Alam, M. T. et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8, 16018 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Monahan, L. G. et al. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. mBio 5, e00935-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Hardie, D. G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895–1908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Z., Odstrcil, E. A., Tu, B. P. & McKnight, S. L. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316, 1916–1919 (2007).

    CAS  PubMed  Google Scholar 

  66. Goemans, C. V. et al. An essential thioredoxin is involved in the control of the cell cycle in the bacterium Caulobacter crescentus. J. Biol. Chem. 293, 3839–3848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Narayanan, S., Janakiraman, B., Kumar, L. & Radhakrishnan, S. K. A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Gene Dev. 29, 1175–1187 (2015).

    CAS  PubMed  Google Scholar 

  68. Masrati, G. et al. Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants. Nat. Commun. 9, 4205 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Chen, Y., Bjornson, K., Redick, S. D. & Erickson, H. P. A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys. J. 88, 505–514 (2005).

    CAS  PubMed  Google Scholar 

  70. Quon, K. C. et al. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl Acad. Sci. USA 95, 120–125 (1998).

    CAS  PubMed  Google Scholar 

  71. Hottes, A. K., Shapiro, L. & McAdams, H. H. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol. Microbiol. 58, 1340–1353 (2005).

    CAS  PubMed  Google Scholar 

  72. Lariviere, P. J. et al. FzlA, an essential regulator of FtsZ filament curvature, controls constriction rate during Caulobacter division. Mol. Microbiol. 107, 180–197 (2018).

    CAS  PubMed  Google Scholar 

  73. Martin, M. E., Trimble, M. J. & Brun, Y. V. Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Mol. Microbiol. 54, 60–74 (2004).

    CAS  PubMed  Google Scholar 

  74. Ohta, N. et al. Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus. J. Bacteriol. 179, 2169–2180 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Banerjee, S. et al. Biphasic growth dynamics control cell division in Caulobacter crescentus. Nat. Microbiol. 2, 17116 (2017).

    CAS  PubMed  Google Scholar 

  76. Si, F. et al. Mechanistic origin of cell-size control and homeostasis in bacteria. Curr. Biol. 29, 1760–1770 e1767 (2019).

    CAS  PubMed  Google Scholar 

  77. Lambert, A. et al. Constriction rate modulation can drive cell size control and homeostasis in C. crescentus. iScience 4, 180–189 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372–384 (1991).

    CAS  PubMed  Google Scholar 

  80. Bolten, C. J. et al. Sampling for metabolome analysis of microorganisms. Anal. Chem. 79, 3843–3849 (2007).

    CAS  PubMed  Google Scholar 

  81. Mulleder, M., Bluemlein, K. & Ralser, M. A high-throughput method for the quantitative determination of free amino acids in Saccharomyces cerevisiae by hydrophilic interaction chromatography-tandem mass spectrometry. Cold Spring Harb. Protoc. 2017, pdb prot089094 (2017).

    PubMed  Google Scholar 

  82. Kiefer, P., Schmitt, U. & Vorholt, J. A. eMZed: an open source framework in Python for rapid and interactive development of LC/MS data analysis workflows. Bioinformatics 29, 963–964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kiefer, P. et al. DynaMet: a fully automated pipeline for dynamic LC-MS data. Anal. Chem. 87, 9679–9686 (2015).

    CAS  PubMed  Google Scholar 

  84. Horn, D. M., Zubarev, R. A. & McLafferty, F. W. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Am. Soc. Mass Spectrom. 11, 320–332 (2000).

    CAS  PubMed  Google Scholar 

  85. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    PubMed  PubMed Central  Google Scholar 

  86. Thanbichler, M., Iniesta, A. A. & Shapiro, L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35, e137 (2007).

    PubMed  PubMed Central  Google Scholar 

  87. Kaczmarczyk, A. et al. Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition. Preprint at bioRxiv https://doi.org/10.1101/675330 (2019).

  88. Kaczmarczyk, A., Vorholt, J. A. & Francez-Charlot, A. Markerless gene deletion system for sphingomonads. Appl. Environ. Microbiol. 78, 3774–3777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Christen (ETH Zurich) for technical support with LC–MS, J. v. Gienanth and C. Marulli (ETH Zurich) for experimental assistance in the early stages of this project, and J. Bögli and S. Stefanova (FACS Core Facility, Biozentrum, University of Basel) for help with flow cytometry. This work was supported by the Swiss National Science Foundation (grant no. 31003A_173094) and ETH Zurich to J.A.V., and by the Swiss National Science Foundation (grant no. 166503 and no. 185372) and an ERC Advanced Research Grant (grant no. 322809) to U.J.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and J.A.V. conceived the project. J.H. synchronized cells. J.H. and F.M. prepared the metabolomics samples. J.H. performed LC–MS measurements. J.H. and P.K. developed the algorithm for metabolite detection and quantification and performed data analysis. A.K. and U.J. planned and performed genetic manipulations, growth experiments and FACS measurements. J.H., A.K. and M.M. performed microscopy and image analysis. T.V. and B.H. performed elemental analysis. J.H. and J.A.V. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Johannes Hartl or Julia A. Vorholt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Pooja Jha.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Methods and References

Reporting Summary

Supplementary Data 1

Cell cycle-dependent abundance profiles of metabolite features detected by LC–MS (nLC-QEx).

Supplementary Data 2

Cell cycle-dependent abundance profiles of metabolite features detected by LC–MS (UPLC-LTQ).

Supplementary Data 3

Clustermap of all metabolite abundance profiles throughout one cell cycle.

Supplementary Data 4

MS/MS spectra used for metabolite annotation.

Supplementary Data 5

Whole-genome sequencing results.

Supplementary Tables 1–11

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartl, J., Kiefer, P., Kaczmarczyk, A. et al. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat Metab 2, 153–166 (2020). https://doi.org/10.1038/s42255-019-0166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0166-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research