Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of gastrointestinal motility—insights from smooth muscle biology

Abstract

Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation–contraction coupling occurs by Ca2+ entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca2+. Ca2+ binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca2+ sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.

Key Points

  • Gastrointestinal motility occurs by the coordinated contractions of the tunica muscula ris, which forms the outer wall of the alimentary canal from the distal oesophagus to the external anal sphincter

  • Excitation–contraction coupling results from Ca2+ entry into smooth muscle cells, Ca2+ release from the sarcoplasmic reticulum, activation of myosin light chain kinase and phosphorylation of the regulatory light chains of myosin

  • Contractile force is tuned by Ca2+ sensitization mechanisms that balance rates of myosin phosphorylation and dephosphorylation

  • Interstitial cells of Cajal (ICC) provide spontaneous pacemaker activity in gastrointestinal muscles; ICC and PDGFRα+ cells also contribute to mediation of inputs from enteric motor neurons

  • Gastrointestinal motility patterns are highly integrated behaviours requiring coordination between smooth muscle cells and utilizing regulatory inputs from interstitial cells, neurons, and endocrine and immune cells

  • Therapeutic regulation and tissue engineering of gastrointestinal motility is proving difficult

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of gastrointestinal motility.
Figure 2: Major cellular mechanisms controlling contraction in gastrointestinal smooth muscle cells.
Figure 3: miRNA-mediated SMC remodelling.

Similar content being viewed by others

References

  1. Kiehart, D. P. Molecular genetic dissection of myosin heavy chain function. Cell 60, 347–350 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Kamm, K. E. & Stull, J. T. Regulation of smooth muscle contractile elements by second messengers. Annu. Rev. Physiol. 51, 299–313 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Nagai, R., Kuro-o, M., Babij, P. & Periasamy, M. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J. Biol. Chem. 264, 9734–9737 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Kelley, C. A., Takahashi, M., Yu, J. H. & Adelstein, R. S. An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J. Biol. Chem. 268, 12848–12854 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. White, S., Martin, A. F. & Periasamy, M. Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am. J. Physiol. 264, C1252–C1258 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Parisi, J. A. & Eddinger, T. J. Smooth muscle myosin heavy chain isoform distribution in the swine stomach. J. Histochem. Cytochem. 50, 385–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Eddinger, T. J. & Meer, D. P. Myosin II isoforms in smooth muscle: heterogeneity and function. Am. J. Physiol. Cell. Physiol. 293, C493–C508 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Somlyo, A. P. & Somlyo, A. V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, D. A. & Stull, J. T. Calcium dependence of myosin light chain phosphorylation in smooth muscle cells. J. Biol. Chem. 263, 14456–14462 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Niiro, N. & Ikebe, M. Zipper-interacting protein kinase induces Ca2+-free smooth muscle contraction via myosin light chain phosphorylation. J. Biol. Chem. 276, 29567–29574 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ihara, E. & MacDonald, J. A. The regulation of smooth muscle contractility by zipper-interacting protein kinase. Can. J. Physiol. Pharmacol. 85, 79–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ito, M., Nakano, T., Erdodi, F. & Hartshorne, D. J. Myosin phosphatase: structure, regulation and function. Mol. Cell. Biochem. 259, 197–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Grassie, M. E., Moffat, L. D., Walsh, M. P. & MacDonald, J. A. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch. Biochem. Biophys. 510, 147–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Mitra, R. & Morad, M. Ca2+ and Ca2+-activated K+ currents in mammalian gastric smooth muscle cells. Science 229, 269–272 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Droogmans, G. & Callewaert, G. Ca2+-channel current and its modification by the dihydropyridine agonist BAY K 8644 in isolated smooth muscle cells. Pflügers Arch. 406, 259–265 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Vogalis, F., Publicover, N. G., Hume, J. R. & Sanders, K. M. Relationship between calcium current and cytosolic calcium concentration in canine gastric smooth muscle cells. Am. J. Physiol. 260, C1012–C1018 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Bolton, T. B., Prestwich, S. A., Zholos, A. V. & Gordienko, D. V. Excitation–contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61, 85–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gibbons, S. J. et al. The alpha1H Ca2+ channel subunit is expressed in mouse jejunal interstitial cells of Cajal and myocytes. J. Cell. Mol. Med. 13, 4422–4431 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y., Deng, X., Hewavitharana, T., Soboloff, J. & Gill, D. L. Stim, ORAI and TRPC channels in the control of calcium entry signals in smooth muscle. Clin. Exp. Pharmacol. Physiol. 35, 1127–1133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsvilovskyy, V. V. et al. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137, 1415–1424 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, H. K., Shuttleworth, C. W. & Sanders, K. M. Tachykinins activate nonselective cation currents in canine colonic myocytes. Am. J. Physiol. 269, C1394–C1401 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Inoue, R. & Isenberg, G. Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. 424, 73–92 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Portbury, A. L., Furness, J. B., Young, H. M., Southwell, B. R. & Vigna, S. R. Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. J. Comp. Neurol. 367, 342–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Grady, E. F. et al. Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. J. Neurosci. 16, 6975–6986 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iino, S., Ward, S. M. & Sanders, K. M. Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J. Physiol. 556, 521–530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanders, K. M. Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil. 20 (Suppl. 1), 39–53 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wray, S. & Burdyga, T. Sarcoplasmic reticulum function in smooth muscle. Physiol. Rev. 90, 113–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Sanders, K. M. Invited review: mechanisms of calcium handling in smooth muscles. J. Appl. Physiol. 91, 1438–1449 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Kotlikoff, M. L., Wang, Y. X., Xin, H. B. & Ji, G. Calcium release by ryanodine receptors in smooth muscle. Novartis Found. Symp. 246, 108–119 (2002).

    CAS  PubMed  Google Scholar 

  31. Kotlikoff, M. I. Calcium-induced calcium release in smooth muscle: the case for loose coupling. Prog. Biophys. Mol. Biol. 83, 171–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. B., Horowitz, B. & Buxton, I. L. Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol. Pharmacol. 40, 943–951 (1991).

    CAS  PubMed  Google Scholar 

  33. Eglen, R. M. Muscarinic receptors and gastrointestinal tract smooth muscle function. Life Sci. 68, 2573–2578 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Zhuge, R., Fogarty, K. E., Tuft, R. A. & Walsh, J. V. Jr. Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca2+ concentration on the order of 10 microM during a Ca2+ spark. J. Gen. Physiol. 120, 15–27 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCarron, J. G., Chalmers, S., Bradley, K. N., MacMillan, D. & Muir, T. C. Ca2+ microdomains in smooth muscle. Cell Calcium 40, 461–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wellman, G. C. & Nelson, M. T. Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34, 211–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Jaggar, J. H., Porter, V. A., Lederer, W. J. & Nelson, M. T. Calcium sparks in smooth muscle. Am. J. Physiol. Cell. Physiol. 278, C235–C256 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Bolton, T. B. Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J. Physiol. 570, 5–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Pacaud, P. & Bolton, T. B. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J. Physiol. 441, 477–499 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nelson, M. T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. ZhuGe, R., Sims, S. M., Tuft, R. A., Fogarty, K. E. & Walsh, J. V. Jr. Ca2+ sparks activate K+ and Cl channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J. Physiol. 513, 711–718 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bayguinov, O., Hagen, B., Bonev, A. D., Nelson, M. T. & Sanders, K. M. Intracellular calcium events activated by ATP in murine colonic myocytes. Am. J. Physiol. Cell Physiol. 279, C126–C135 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Dwyer, L. et al. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G287–G296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Large, W. A. & Wang, Q. Characteristics and physiological role of the Ca2+-activated Cl conductance in smooth muscle. Am. J. Physiol. 271, C435–C454 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. McGeown, J. G. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: one store or two? Cell Calcium 35, 613–619 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Himpens, B. & Casteels, R. Different effects of depolarization and muscarinic stimulation on the Ca2+/force relationship during the contraction-relaxation cycle in the guinea pig ileum. Pflügers Arch. 416, 28–35 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Kitazawa, T., Eto, M., Woodsome, T. P. & Khalequzzaman, M. Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J. Physiol. 546, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hirano, K. Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle. J. Pharmacol. Sci. 104, 109–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Haystead, T. A. ZIP kinase, a key regulator of myosin protein phosphatase 1. Cell. Signal. 17, 1313–1322 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. MacDonald, J. A. et al. Identification of the endogenous smooth muscle myosin phosphatase-associated kinase. Proc. Natl Acad. Sci. USA 98, 2419–2424 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nishimura, J. & van Breemen, C. Direct regulation of smooth muscle contractile elements by second messengers. Biochem. Biophys. Res. Commun. 163, 929–935 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, X., Somlyo, A. V. & Somlyo, A. P. Cyclic GMP-dependent stimulation reverses G-protein-coupled inhibition of smooth muscle myosin light chain phosphate. Biochem. Biophys. Res. Commun. 220, 658–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Sauzeau, V. et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem. 275, 21722–21729 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Shirinsky, V. P. et al. A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP. J. Biol. Chem. 268, 16578–16583 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Khromov, A. S. et al. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc. Natl Acad. Sci. USA 103, 2440–2445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bennett, M. R., Burnstock, G. & Holman, M. Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J. Physiol. 182, 541–558 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bennett, M. R. Transmission from intramural excitatory nerves to the smooth muscle cells of the guinea-pig taenia coli. J. Physiol. 185, 132–147 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kosterlitz, H. W., Pirie, V. W. & Robinson, J. A. The mechanism of the peristaltic reflex in the isolated guinea-pig ileum. J. Physiol. 133, 681–694 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirst, G. D. S., Holman, M. E. & McKirdy, H. C. Two descending nerve pathways activated by distension of guinea-pig small intestine. J. Physiol. 244, 113–127 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spencer, N., Walsh, M. & Smith, T. K. Does the guinea-pig ileum obey the 'law of the intestine'? J. Physiol. 517, 889–898 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bennett, M. R. Rebound excitation of the smooth muscle cells of the guinea-pig taenia coli after stimulation of intramural inhibitory nerves. J. Physiol. 185, 124–131 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bywater, R. A., Holman, M. E. & Taylor, G. S. Atropine-resistant depolarization in the guinea-pig small intestine. J. Physiol. 316, 369–378 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Benham, C. D., Bolton, T. B. & Lang, R. J. Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature 316, 345–347 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. Inoue, R. & Isenberg, G. Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am. J. Physiol. 258, C1173–C1178 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Grady, E. F. et al. Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. J. Neurosci. 16, 6975–6986 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cao, W. et al. Gq-linked NK(2) receptors mediate neurally induced contraction of human sigmoid circular smooth muscle. Gastroenterology 119, 51–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Lecci, A., Capriati, A., Altamura, M. & Maggi, C. A. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton. Neurosci. 126127, 232–249 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. Mulè, F., Amato, A., Vannucchi, M. G., Faussone-Pellegrini, M. S. & Serio, R. Role of NK1 and NK2 receptors in mouse gastric mechanical activity. Br. J. Pharmacol. 147, 430–436 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bult, H. et al. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345, 346–347 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Sanders, K. M. & Ward, S. M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am. J. Physiol. 262, G379–G392 (1992).

    CAS  PubMed  Google Scholar 

  72. Koh, S. D. et al. TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission. J. Biol. Chem. 276, 44338–44346 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Koh, S. D., Campbell, J. D., Carl, A. & Sanders, K. M. Nitric oxide activates multiple potassium channels in canine colonic smooth muscle. J. Physiol. 489, 735–743 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mutafova-Yambolieva, V. N. et al. Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc. Natl Acad. Sci. USA 104, 16359–16364 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hwang, S. J. et al. β-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 140, 608–617 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Kurahashi, M. et al. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J. Physiol. 589, 697–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Gallego, D. et al. Purinergic neuromuscular transmission is absent in the colon of P2Y1 knocked out mice. J. Physiol. 590, 1943–1956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hwang, S. J. et al. P2Y1 Purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J. Physiol. 590, 1957–1972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Goyal, R. K., Rattan, S. & Said, S. I. VIP as a possible neurotransmitter of non-cholinergic non-adrenergic inhibitory neurones. Nature 288, 378–380 (1980).

    Article  CAS  PubMed  Google Scholar 

  80. McConalogue, K. et al. Histochemical, pharmacological, biochemical and chromatographic evidence that pituitary adenylyl cyclase activating peptide is involved in inhibitory neurotransmission in the taenia of the guinea-pig caecum. J. Auton. Nerv. Syst. 50, 311–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Hagen, B. M., Bayguinov, O. & Sanders, K. M. VIP and PACAP regulate localized Ca2+ transients via cAMP-dependent mechanism. Am. J. Physiol. Cell Physiol. 291, C375–C385 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Schulz, S. et al. Immunocytochemical identification of VPAC1, VPAC2, and PAC1 receptors in normal and neoplastic human tissues with subtype-specific antibodies. Clin. Cancer Res. 10, 8235–8242 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kunze, W. A. & Furness, J. B. The enteric nervous system and regulation of intestinal motility. Annu. Rev. Physiol. 61, 117–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Szurszewski, J. H. in Physiology of the Gastrointestinal Tract (ed. Johnson, L. R.) 393–422 (Raven Press, New York, 1987).

    Google Scholar 

  85. Connor, J. A., Prosser, C. L. & Weems, W. A. A study of pace-maker activity in intestinal smooth muscle. J. Physiol. 240, 671–701 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thuneberg, L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv. Anat. Embryol. Cell Biol. 71, 1–130 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Faussone Pellegrini, M. S., Cortesini, C. & Romagnoli, P. Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal's interstitial cells [Italian] Arch. Ital. Anat. Embriol. 82, 157–177 (1977).

    CAS  PubMed  Google Scholar 

  88. Smith, T. K., Reed, J. B. & Sanders, K. M. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am. J. Physiol. 252, C215–C224 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Bauer, A. J., Publicover, N. G. & Sanders, K. M. Origin and spread of slow waves in canine gastric antral circular muscle. Am. J. Physiol. 249, G800–G806 (1985).

    CAS  PubMed  Google Scholar 

  90. Hara, Y., Kubota, M. & Szurszewski, J. H. Electrophysiology of smooth muscle of the small intestine of some mammals. J. Physiol. 372, 501–520 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Langton, P., Ward, S. M., Carl, A., Norell, M. A. & Sanders, K. M. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc. Natl Acad. Sci USA 86, 7280–7284 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhu, M. H. et al. A Ca2+-activated Cl conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J. Physiol. 587, 4905–4918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ward, S. M., Burns, A. J., Torihashi, S. & Sanders, K. M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Torihashi, S. et al. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 280, 97–111 (1995).

    CAS  PubMed  Google Scholar 

  95. Huizinga, J. D. et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Burns, A. J. Disorders of interstitial cells of Cajal. J. Pediatr. Gastroenterol. Nutr. 45 (Suppl. 2), S103–S106 (2007).

    Article  PubMed  Google Scholar 

  97. Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20 (Suppl. 1), 54–63 (2008).

    Article  PubMed  Google Scholar 

  98. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Burns, A. J., Lomax, A. E., Torihashi, S., Sanders, K. M. & Ward, S. M. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc. Natl Acad. Sci. USA 93, 12008–12013 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Burns, A. J., Herbert, T. M., Ward, S. M. & Sanders, K. M. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 290, 11–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Komuro, T., Seki, K. & Horiguchi, K. Ultrastructural characterization of the interstitial cells of Cajal. Arch. Histol. Cytol. 62, 295–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Komuro, T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J. Physiol. 576, 653–658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dickens, E. J., Hirst, G. D. & Tomita, T. Identification of rhythmically active cells in guinea-pig stomach. J. Physiol. 514, 515–531 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kito, Y. & Suzuki, H. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J. Physiol. 553, 803–818 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cousins, H. M., Edwards, F. R., Hickey, H., Hill, C. E. & Hirst, G. D. Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J. Physiol. 550, 829–844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomsen, L. et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848–851 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Koh, S. D., Sanders, K. M. & Ward, S. M. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J. Physiol. (Lond.) 513, 203–213 (1998).

    Article  CAS  Google Scholar 

  108. Zhu, M. H. et al. A Ca2+-activated Cl conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J. Physiol. 587, 4905–4918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ro, S. et al. A model to study the phenotypic changes of interstitial cells of Cajal in gastrointestinal diseases. Gastroenterology 138, 1068–1078 (2010).

    Article  PubMed  Google Scholar 

  110. Hwang, S. J. et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J. Physiol. 587, 4887–4904 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Imaizumi, M. & Hama, K. An electromicroscopic study on the interstitial cells of the gizzard in the love bird (Uronlonchu domestica). Z. Zellforsch. Mikrosk. Anat. 97, 351–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  112. Daniel, E. E. & Posey-Daniel, V. Neuromuscular structures in opossum esophagus: role of interstitial cells of Cajal. Am. J. Physiol. 246, G305–G315 (1984).

    CAS  PubMed  Google Scholar 

  113. Cajal, S. R. Histologie du système nerveux de l'homme et des vertébrés. Vol. 2 891–942 (Maloine, Paris, 1911).

    Google Scholar 

  114. Chen, H. et al. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am. J. Physiol. Cell Physiol. 292, C497–C507 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Iino, S., Horiguchi, K., Nojyo, Y., Ward, S. M. & Sanders, K. M. Interstitial cells of Cajal contain signalling molecules for transduction of nitrergic stimulation in guinea pig caecum. Neurogastroenterol. Motil. 21, 542–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Beckett, E. A., Takeda, Y., Yanase, H., Sanders, K. M. & Ward, S. M. Synaptic specializations exist between enteric motor nerves and interstitial cells of Cajal in the murine stomach. J. Comp. Neurol. 493, 193–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Ward, S. M. et al. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J. Neurosci. 20, 1393–1403 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Beckett, E. A., Horiguchi, K., Khoyi, M., Sanders, K. M. & Ward, S. M. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sld mice. J. Physiol. 543, 871–887 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Albertí, E. et al. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1499–G1510 (2007).

    Article  PubMed  CAS  Google Scholar 

  120. Huizinga, J. D. et al. Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. Am. J. Physiol. Gastr ointest. Liver Physiol. 294, G589–G594 (2008).

    Article  CAS  Google Scholar 

  121. Sanders, K. M., Hwang, S. J. & Ward, S. M. Neuroeffector apparatus in gastrointestinal smooth muscle organs. J. Physiol. 588, 4621–4639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu, M. H. et al. Muscarinic activation of Ca2+-activated Cl- current in interstitial cells of Cajal. J. Physiol. 589, 4565–4582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gabella, G. & Blundell, D. Gap junctions of the muscles of the small and large intestine. Cell Tissue Res. 219, 469–488 (1981).

    Article  CAS  PubMed  Google Scholar 

  124. Daniel, E. E. & Wang, Y. F. Gap junctions in intestinal smooth muscle and interstitial cells of Cajal. Microsc. Res. Tech. 47, 309–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Seki, K., Zhou, D. S. & Komuro, T. Immunohistochemical study of the c-kit expressing cells and connexin 43 in the guinea-pig digestive tract. J. Auton. Nerv. Syst. 68, 182–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Seki, K. & Komuro, T. Immunocytochemical demonstration of the gap junction proteins connexin 43 and connexin 45 in the musculature of the rat small intestine. Cell Tissue Res. 306, 417–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Li, Z., Zhou, Z. & Daniel, E. E. Expression of gap junction connexin 43 and connexin 43 mRNA in different regional tissues of intestine in dog. Am. J. Physiol. 265, G911–G916 (1993).

    CAS  PubMed  Google Scholar 

  128. Vogalis, F. & Goyal, R. K. Activation of small conductance Ca2+-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J. Physiol. 502, 497–508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Koh, S. D., Dick, G. M. & Sanders, K. M. Small-conductance Ca2+-dependent K+ channels activated by ATP in murine colonic smooth muscle. Am. J. Physiol. 273, C2010–C2021 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Ishikawa, K., Komuro, T., Hirota, S. & Kitamura, Y. Ultrastructural identification of the c-kit-expressing interstitial cells in the rat stomach: a comparison of control and Ws/Ws mutant rats. Cell Tissue Res. 289, 137–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Horiguchi, K. & Komuro, T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/WV mouse small intestine. J. Auton. Nerv. Syst. 80, 142–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Mitsui, R. & Komuro, T. Distribution and ultrastructure of interstitial cells of Cajal in the gastric antrum of wild-type and Ws/Ws rats. Anat. Embryol. 206, 453–460 (2003).

    Article  Google Scholar 

  133. Klemm, M. F. & Lang, R. J. Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin. Exp. Pharmacol. Physiol. 29, 18–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Vanderwinden, J. M. et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res. 310, 349–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Iino, S., Horiguchi, K., Horiguchi, S. & Nojyo, Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem. Cell. Biol. 131, 691–702 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Iino, S. & Nojyo, Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch. Histol. Cytol. 72, 107–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Laube, H. R., Duwe, J., Rutsch, W. & Konertz, W. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 120, 134–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Beamish, J. A., He, P., Kottke-Marchant, K. & Marchant, R. E. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng. Part B Rev. 16, 467–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bitar, K. N. & Raghavan, S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol. Motil. 24, 7–19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Raghavan, S. et al. Successful implantation of physiologically functional bioengineered mouse internal anal sphincter. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G430–G439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Raghavan, S. et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology 141, 310–319 (2011).

    Article  PubMed  Google Scholar 

  142. Miano, J. M., Long, X. & Fujiwara, K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am. J. Physiol. Cell Physiol. 292, C70–C81 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, Z. et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428, 185–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 119, 2634–2647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Park, C. et al. Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes. Gastroenterology 141, 164–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Ji, R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 100, 1579–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Lin, Y. et al. Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J. Biol. Chem. 284, 7903–7913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, J. et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler. Thromb. Vasc. Biol. 31, 368–375 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Torella, D. et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ. Res. 109, 880–893 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A. & Kosik, K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Park, C. et al. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells. PLoS ONE 6, e18628 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dickson, L. & Finlayson, K. VPAC and PAC receptors: From ligands to function. Pharmacol. Ther. 121, 294–316 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of these authors and time spent on this Review was supported by grants from the NIDDK: R37 DK40569 (K. M. Sanders), P01 DK41315 (K. M. Sanders, S. D. Koh and S. M. Ward) and P20 GM103513 (S. Ro). The authors are grateful for discussions with Dr B. Perrino and his comments on the manuscript. We apologize if we have neglected the work of some investigators; research on gastrointestinal smooth muscle biology is bountiful and could not be reviewed exhaustively in this limited space.

Author information

Authors and Affiliations

Authors

Contributions

K. M. Sanders contributed to all aspects of this manuscript. S. D. Koh and S. M. Ward contributed to the discussion of content and reviewing/editing the manuscript. S. Ro contributed to writing and reviewing/editing the manuscript.

Corresponding author

Correspondence to Kenton M. Sanders.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, K., Koh, S., Ro, S. et al. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9, 633–645 (2012). https://doi.org/10.1038/nrgastro.2012.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing