Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Myelination of rodent hippocampal neurons in culture

Abstract

Axons of various hippocampal neurons are myelinated mainly postnatally, which is important for the proper function of neural circuits. Demyelination in the hippocampus has been observed in patients with multiple sclerosis, Alzheimer's disease or temporal lobe epilepsy. However, very little is known about the mechanisms and exact functions of the interaction between the myelin-making oligodendrocytes and the axons within the hippocampus. This is mainly attributable to the lack of a system suitable for molecular studies. We recently established a new myelin coculture from embryonic day (E) 18 rat embryos consisting of hippocampal neurons and oligodendrocytes, with which we identified a novel intra-axonal signaling pathway regulating the juxtaparanodal clustering of Kv1.2 channels. Here we describe the detailed protocol for this new coculture. It takes about 5 weeks to set up and use the system. This coculture is particularly useful for studying myelin-mediated regulation of ion channel trafficking and for understanding how neuronal excitability and synaptic transmission are regulated by myelination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissection procedure of rat brain from the E18 embryos for making the myelin coculture.
Figure 2: The timeline for making hippocampal neuron culture and coculture.
Figure 3: Maturation of oligodendrocytes cocultured with hippocampal neurons.
Figure 4: Myelination of hippocampal neurons expressing YFP.
Figure 5: Myelin segments of mature oligodendrocytes in the coculture.

Similar content being viewed by others

References

  1. Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Craig, A.M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Horton, A.C. & Ehlers, M.D. Neuronal polarity and trafficking. Neuron 40, 277–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Dotti, C.G. & Banker, G.A. Experimentally induced alteration in the polarity of developing neurons. Nature 330, 254–256 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Sampo, B., Kaech, S., Kunz, S. & Banker, G. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37, 611–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Wisco, D. et al. Uncovering multiple axonal targeting pathways in hippocampal neurons. J. Cell Biol. 162, 1317–1328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gu, C., Jan, Y.N. & Jan, L.Y. A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels. Science 301, 646–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Gu, C. et al. The microtubule plus-end tracking protein EB1 is required for Kv1 voltage-gated K+ channel axonal targeting. Neuron 52, 803–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Barry, J., Gu, Y. & Gu, C. Polarized targeting of L1-CAM regulates axonal and dendritic bundling in vitro. Eur. J. Neurosci. 32, 1618–1631 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gu, Y. & Gu, C. Dynamics of Kv1 channel transport in axons. PLoS ONE 5, e11931 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Horton, A.C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi, T., Thomas, G.M. & Huganir, R.L. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 64, 213–226 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryu, J. et al. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, M.E. et al. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71, 640–655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold, S.E. & Trojanowski, J.Q. Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J. Comp. Neurol. 367, 274–292 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Haber, M., Vautrin, S., Fry, E.J. & Murai, K.K. Subtype-specific oligodendrocyte dynamics in organotypic culture. Glia 57, 1000–1013 (2009).

    Article  PubMed  Google Scholar 

  17. Dutta, R. et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann. Neurol. 69, 445–454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noble, M. The possible role of myelin destruction as a precipitating event in Alzheimer's disease. Neurobiol. Aging 25, 25–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dawodu, S. & Thom, M. Quantitative neuropathology of the entorhinal cortex region in patients with hippocampal sclerosis and temporal lobe epilepsy. Epilepsia 46, 23–30 (2005).

    Article  PubMed  Google Scholar 

  20. Chambers, J.S. & Perrone-Bizzozero, N.I. Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem. Res. 29, 2293–2302 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Chan, J.R. et al. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43, 183–191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watkins, T.A., Emery, B., Mulinyawe, S. & Barres, B.A. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nash, B. et al. Functional duality of astrocytes in myelination. J. Neurosci. 31, 13028–13038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomson, C.E. et al. Myelinated, synapsing cultures of murine spinal cord—validation as an in vitro model of the central nervous system. Eur. J. Neurosci. 28, 1518–1535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lubetzki, C. et al. Even in culture, oligodendrocytes myelinate solely axons. Proc. Natl. Acad. Sci. USA 90, 6820–6824 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, M., Cao, R., Xiao, R., Zhu, M.X. & Gu, C. The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J. Neurosci. 27, 14158–14170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, M., Gu, Y., Barry, J. & Gu, C. Kinesin I transports tetramerized Kv3 channels through the axon initial segment via direct binding. J. Neurosci. 30, 15987–16001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gu, Y., Barry, J., McDougel, R., Terman, D. & Gu, C. Alternative splicing regulates kv3.1 polarized targeting to adjust maximal spiking frequency. J. Biol. Chem. 287, 1755–1769 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gu, C. & Gu, Y. Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J. Biol. Chem. 286, 25835–25847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gu, C. & Barry, J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog. Neurobiol. 94, 115–132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, M. & Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695–700 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Barry and Y. Gu for technical assistance, and the Campus Microscopy & Imaging facility at the Ohio State University and Research Core Services at Lerner Research Institute of Cleveland Clinic Foundation for technical assistance in transmission electron microscopy. This work was supported by a career transition fellowship award from the US National Multiple Sclerosis Society (grant TA3012A1) and a grant from the US National Institute of Neurological Disorders and Stroke/National Institutes of Health (R01NS062720) to C.G. All animal experiments have been conducted in accordance with the US National Institutes of Health Animal Use Guidelines.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and C.G. designed and performed the experiments. A.G., P.J. and C.G. wrote the manuscript. C.G. supervised the project.

Corresponding author

Correspondence to Chen Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, A., Jukkola, P. & Gu, C. Myelination of rodent hippocampal neurons in culture. Nat Protoc 7, 1774–1782 (2012). https://doi.org/10.1038/nprot.2012.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.100

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing