Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq

Abstract

Ribonucleotides are the most common noncanonical nucleotides incorporated into the genome of replicating cells. They are efficiently removed by ribonucleotide excision repair initiated by RNase H2 cleavage. In the absence of RNase H2, such embedded ribonucleotides can be used to track DNA polymerase activity in vivo. To determine their precise location in Saccharomyces cerevisiae, we developed embedded ribonucleotide sequencing (emRiboSeq), which uses recombinant RNase H2 to selectively create ligatable 3′-hydroxyl groups, in contrast to alternative methods that use alkaline hydrolysis. EmRiboSeq allows reproducible, strand-specific and potentially quantitative detection of embedded ribonucleotides at single-nucleotide resolution. For the genome-wide mapping of other noncanonical bases, RNase H2 can be replaced with specific nicking endonucleases in this protocol; we term this method endonuclease sequencing (EndoSeq). With the protocol taking <5 d to complete, these methods allow the in vivo study of DNA replication and repair, including the identification of replication origins and termination regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The emRiboSeq protocol.
Figure 2: Library quality control and anticipated results.

Similar content being viewed by others

References

  1. Clausen, A.R., Zhang, S., Burgers, P.M., Lee, M.Y. & Kunkel, T.A. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase delta. DNA Repair (Amst.) 12, 121–127 (2013).

    Article  CAS  Google Scholar 

  2. Goksenin, A.Y. et al. Human DNA polymerase epsilon is able to efficiently extend from multiple consecutive ribonucleotides. J. Biol. Chem. 287, 42675–42684 (2012).

    Article  Google Scholar 

  3. Gosavi, R.A., Moon, A.F., Kunkel, T.A., Pedersen, L.C. & Bebenek, K. The catalytic cycle for ribonucleotide incorporation by human DNA Pol lambda. Nucleic Acids Res. 40, 7518–7527 (2012).

    Article  CAS  Google Scholar 

  4. Kasiviswanathan, R. & Copeland, W.C. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 286, 31490–31500 (2011).

    Article  CAS  Google Scholar 

  5. Nick McElhinny, S.A. et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. USA 107, 4949–4954 (2010).

    Article  CAS  Google Scholar 

  6. Nick McElhinny, S.A. et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6, 774–781 (2010).

    Article  CAS  Google Scholar 

  7. Nick McElhinny, S.A. & Ramsden, D.A. Polymerase mu is a DNA-directed DNA/RNA polymerase. Mol. Cell. Biol. 23, 2309–2315 (2003).

    Article  CAS  Google Scholar 

  8. Reijns, M.A. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    Article  CAS  Google Scholar 

  9. Yao, N.Y., Schroeder, J.W., Yurieva, O., Simmons, L.A. & O'Donnell, M.E. Cost of rNTP/dNTP pool imbalance at the replication fork. Proc. Natl. Acad. Sci. USA 110, 12942–12947 (2013).

    Article  CAS  Google Scholar 

  10. Caldecott, K.W. Molecular biology. Ribose—an internal threat to DNA. Science 343, 260–261 (2014).

    Article  CAS  Google Scholar 

  11. Dalgaard, J.Z. Causes and consequences of ribonucleotide incorporation into nuclear DNA. Trends Genet. 28, 592–597 (2012).

    Article  CAS  Google Scholar 

  12. Potenski, C.J. & Klein, H.L. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Res. 42, 10226–10234 (2014).

    Article  CAS  Google Scholar 

  13. Vaisman, A. & Woodgate, R. Redundancy in ribonucleotide excision repair: competition, compensation, and cooperation. DNA Repair (Amst.) 29, 74–82 (2015).

    Article  CAS  Google Scholar 

  14. Wallace, B.D. & Williams, R.S. Ribonucleotide triggered DNA damage and RNA-DNA damage responses. RNA Biol. 11, 1340–1346 (2014).

    Article  Google Scholar 

  15. Williams, J.S. & Kunkel, T.A. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair (Amst.) 19, 27–37 (2014).

    Article  CAS  Google Scholar 

  16. Martin, M.J., Garcia-Ortiz, M.V., Esteban, V. & Blanco, L. Ribonucleotides and manganese ions improve non-homologous end joining by human Polmu. Nucleic Acids Res. 41, 2428–2436 (2013).

    Article  CAS  Google Scholar 

  17. Ghodgaonkar, M.M. et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol. Cell 50, 323–332 (2013).

    Article  CAS  Google Scholar 

  18. Lujan, S.A., Williams, J.S., Clausen, A.R., Clark, A.B. & Kunkel, T.A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50, 437–443 (2013).

    Article  CAS  Google Scholar 

  19. Allen-Soltero, S., Martinez, S.L., Putnam, C.D. & Kolodner, R.D. A Saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol. Cell. Biol. 34, 1521–1534 (2014).

    Article  Google Scholar 

  20. Cho, J.E., Kim, N., Li, Y.C. & Jinks-Robertson, S. Two distinct mechanisms of topoisomerase 1-dependent mutagenesis in yeast. DNA Repair (Amst.) 12, 205–211 (2013).

    Article  CAS  Google Scholar 

  21. Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    Article  Google Scholar 

  22. Hiller, B. et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419–1426 (2012).

    Article  CAS  Google Scholar 

  23. Kalhorzadeh, P. et al. Arabidopsis thaliana RNase H2 deficiency counteracts the needs for the WEE1 checkpoint kinase but triggers genome instability. Plant Cell 26, 3680–3692 (2014).

    Article  CAS  Google Scholar 

  24. Kim, N. et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332, 1561–1564 (2011).

    Article  CAS  Google Scholar 

  25. Pizzi, S. et al. Reduction of hRNase H2 activity in Aicardi-Goutières syndrome cells leads to replication stress and genome instability. Hum. Mol. Genet. 24, 649–658 (2015).

    Article  CAS  Google Scholar 

  26. Crow, Y. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  Google Scholar 

  27. Reijns, M.A. & Jackson, A.P. Ribonuclease H2 in health and disease. Biochem. Soc. Trans. 42, 717–725 (2014).

    Article  CAS  Google Scholar 

  28. Schellenberg, M.J., Tumbale, P.P. & Williams, R.S. Molecular underpinnings of aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease. Prog. Biophys. Mol. Biol. 117, 157–165 (2015).

    Article  CAS  Google Scholar 

  29. Tumbale, P., Williams, J.S., Schellenberg, M.J., Kunkel, T.A. & Williams, R.S. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity. Nature 506, 111–115 (2014).

    Article  CAS  Google Scholar 

  30. Reijns, M.A. et al. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518, 502–506 (2015).

    Article  CAS  Google Scholar 

  31. Sparks, J.L. et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980–986 (2012).

    Article  CAS  Google Scholar 

  32. Williams, J.S. et al. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat. Struct. Mol. Biol. 22, 291–297 (2015).

    Article  CAS  Google Scholar 

  33. Clausen, A.R. et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. 22, 185–191 (2015).

    Article  CAS  Google Scholar 

  34. Daigaku, Y. et al. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. 22, 192–198 (2015).

    Article  CAS  Google Scholar 

  35. Koh, K.D., Balachander, S., Hesselberth, J.R. & Storici, F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods 12, 251–257 (2015).

    Article  CAS  Google Scholar 

  36. Koh, K.D., Hesselberth, J. & Storici, F. Ribose-seq: ribonucleotides in DNA to Illumina library. Protoc. Exchange 10.1038/protex.2015.044 (19 May 2015).

  37. Jinks-Robertson, S. & Klein, H.L. Ribonucleotides in DNA: hidden in plain sight. Nat. Struct. Mol. Biol. 22, 176–178 (2015).

    Article  CAS  Google Scholar 

  38. Bailly, V., Derydt, M. & Verly, W.G. Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. Biochem. J. 261, 707–713 (1989).

    Article  CAS  Google Scholar 

  39. Bryan, D.S., Ransom, M., Adane, B., York, K. & Hesselberth, J.R. High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res. 24, 1534–1542 (2014).

    Article  CAS  Google Scholar 

  40. Potenski, C.J., Niu, H., Sung, P. & Klein, H.L. Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511, 251–254 (2014).

    Article  CAS  Google Scholar 

  41. Vaisman, A. et al. Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLoS Genet. 9, e1003878 (2013).

    Article  Google Scholar 

  42. Williams, J.S. et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 49, 1010–1015 (2013).

    Article  CAS  Google Scholar 

  43. Clark, A.B., Lujan, S.A., Kissling, G.E. & Kunkel, T.A. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase epsilon. DNA Repair (Amst.) 10, 476–482 (2011).

    Article  CAS  Google Scholar 

  44. Huang, M.E., Rio, A.G., Nicolas, A. & Kolodner, R.D. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100, 11529–11534 (2003).

    Article  CAS  Google Scholar 

  45. Lazzaro, F. et al. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 45, 99–110 (2012).

    Article  CAS  Google Scholar 

  46. Reijns, M.A. et al. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J. Biol. Chem. 286, 10530–10539 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Gallacher for technical assistance throughout the development of this protocol and T. Kunkel (National Institute of Environmental Health Sciences) for sharing yeast strains. This work was supported by funding from the Medical Research Council (MRC; Centenary Award to M.A.M.R.), the MRC and Medical Research Foundation (to M.S.T.) and the MRC and Lister Institute of Preventive Medicine (to A.P.J.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.M.R., M.S.T. and A.P.J. conceived and designed the original protocol. M.A.M.R. and J.D. modified and updated the protocol to its current state. M.S.T. performed all computational analyses. J.D. and M.A.M.R. wrote the manuscript with assistance from M.S.T. and A.P.J.

Corresponding author

Correspondence to Martin A M Reijns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Taylor, M., Jackson, A. et al. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Nat Protoc 10, 1433–1444 (2015). https://doi.org/10.1038/nprot.2015.099

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.099

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing