Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal infrared emission from biased graphene

Abstract

The high carrier mobility1,2 and thermal conductivity3,4 of graphene make it a candidate material for future high-speed electronic devices5. Although the thermal behaviour of high-speed devices can limit their performance, the thermal properties of graphene devices remain incompletely understood. Here, we show that spatially resolved thermal radiation from biased graphene transistors can be used to extract the temperature distribution, carrier densities and spatial location of the Dirac point in the graphene channel. The graphene exhibits a temperature maximum with a location that can be controlled by the gate voltage. Stationary hot spots are also observed. Infrared emission represents a convenient and non-invasive characterization tool for graphene devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal emission from biased graphene.
Figure 2: Comparison of three different temperature measurements.
Figure 3: Bias-dependent thermal images of graphene.
Figure 4: Temperatures, charge carriers and the position of the Dirac point during gate-voltage sweeps.

Similar content being viewed by others

References

  1. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  2. Du, X. et al. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  3. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  4. Ghosh, S. et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).

    Article  Google Scholar 

  5. Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  CAS  Google Scholar 

  6. Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009).

    Article  CAS  Google Scholar 

  7. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  8. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

  9. Calizo, I. et al. Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007).

    Article  Google Scholar 

  10. Lazzeri, M. et al. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).

    Article  Google Scholar 

  11. Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Article  Google Scholar 

  12. Bushmaker, A. W. et al. Direct observation of mode selective electron phonon coupling in suspended carbon nanotubes. Nano Lett. 7, 3618–3622 (2007).

    Article  CAS  Google Scholar 

  13. Oron-Carl, M. & Krupke, R. Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes. Phys. Rev. Lett. 100, 127401 (2008).

    Article  CAS  Google Scholar 

  14. Steiner, M. et al. Phonon populations and electrical power dissipation in carbon nanotube transistors. Nature Nanotech. 4, 320–324 (2009).

    Article  CAS  Google Scholar 

  15. Chae, D.-H. et al. Hot phonons in an electrically biased graphene constriction. Nano Lett. 10, 466–471 (2010).

    Article  CAS  Google Scholar 

  16. Connolly, M. R. et al. Scanning gate microscopy of current-annealed single layer graphene. Appl. Phys. Lett. 96, 113501 (2010).

    Article  Google Scholar 

  17. Berber, S., Kwon, Y.-K. & Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).

    Article  CAS  Google Scholar 

  18. Osman, M. A. & Srivastava, D. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12, 21–24 (2001).

    Article  CAS  Google Scholar 

  19. Nika, D. L. et al. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009).

    Article  Google Scholar 

  20. Chen, J.-H. et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  21. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  CAS  Google Scholar 

  22. Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008).

    Article  Google Scholar 

  23. Rotkin, S. V. et al. An essential mechanism of heat dissipation in carbon nanotube electronics. Nano Lett. 9, 1850–1855 (2009).

    Article  CAS  Google Scholar 

  24. Tersoff, J. et al. Device modeling of long-channel nanotube electro-optical emitter. Appl. Phys. Lett. 86, 263108 (2005).

    Article  Google Scholar 

  25. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of this manuscript.

Corresponding author

Correspondence to Marcus Freitag.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary movie (AVI 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitag, M., Chiu, HY., Steiner, M. et al. Thermal infrared emission from biased graphene. Nature Nanotech 5, 497–501 (2010). https://doi.org/10.1038/nnano.2010.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing