Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry

Abstract

In low-dimensional systems, the combination of reduced dimensionality, strong interactions and topology has led to a growing number of many-body quantum phenomena. Thermal transport, which is sensitive to all energy-carrying degrees of freedom, provides a discriminating probe of emergent excitations in quantum materials and devices. However, thermal transport measurements in low dimensions are dominated by the phonon contribution of the lattice, requiring an experimental approach to isolate the electronic thermal conductance. Here we measured non-local voltage fluctuations in a multi-terminal device to reveal the electronic heat transported across a mesoscopic bridge made of low-dimensional materials. Using two-dimensional graphene as a noise thermometer, we measured the quantitative electronic thermal conductance of graphene and carbon nanotubes up to 70 K, achieving a precision of ~1% of the thermal conductance quantum at 5 K. Employing linear and nonlinear thermal transport, we observed signatures of energy transport mediated by long-range interactions in one-dimensional electron systems, in agreement with a theoretical model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nonlocal noise thermometry in multi-terminal devices.
Fig. 2: Electronic thermal conductance of graphene.
Fig. 3: Electronic thermal conductance of carbon NTs.
Fig. 4: Nonlinear thermal transport in carbon NTs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at the online depository Zenodo (https://doi.org/10.5281/zenodo.5500449).

References

  1. Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).

    Article  Google Scholar 

  2. Wakeham, N. et al. Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor. Nat. Commun. 2, 396 (2011).

    Article  Google Scholar 

  3. Smith, R. P. et al. Marginal breakdown of the Fermi-liquid state on the border of metallic ferromagnetism. Nature 455, 1220–1223 (2008).

    Article  CAS  Google Scholar 

  4. Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. Science 316, 1320–1322 (2007).

    Article  CAS  Google Scholar 

  5. Hill, R. W., Proust, C., Taillefer, L., Fournier, P. & Greene, R. L. Breakdown of Fermi-liquid theory in a copper-oxide superconductor. Nature 414, 711–715 (2001).

    Article  CAS  Google Scholar 

  6. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  CAS  Google Scholar 

  7. Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article  CAS  Google Scholar 

  8. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article  Google Scholar 

  9. Shapir, I. et al. Imaging the electronic Wigner crystal in one dimension. Science 364, 870–875 (2019).

    Article  CAS  Google Scholar 

  10. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  Google Scholar 

  11. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Article  Google Scholar 

  12. Li, M. & Chen, G. Thermal transport for probing quantum materials. MRS Bull. 45, 348–356 (2020).

    Article  Google Scholar 

  13. Tritt, T. M. Thermal Conductivity (Kluwer Academic and Plenum Press, 2004).

    Book  Google Scholar 

  14. Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

    Article  CAS  Google Scholar 

  15. Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    Article  CAS  Google Scholar 

  16. Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature https://doi.org/10.1038/s41586-018-0184-1 (2018).

  17. Srivastav, S. K. et al. Universal quantized thermal conductance in graphene. Sci. Adv. 5, eaaw5798 (2019).

    Article  CAS  Google Scholar 

  18. Dutta, B. et al. Thermal conductance of a single-electron transistor. Phys. Rev. Lett. 119, 077701 (2017).

    Article  CAS  Google Scholar 

  19. Cui, L. et al. Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017).

    Article  CAS  Google Scholar 

  20. Mosso, N. et al. Heat transport through atomic contacts. Nat. Nanotechnol. 12, 430–433 (2017).

    Article  CAS  Google Scholar 

  21. Crossno, J., Liu, X., Ohki, T. A., Kim, P. & Fong, K. C. Development of high frequency and wide bandwidth Johnson noise thermometry. Appl. Phys. Lett. 106, 023121 (2015).

    Article  Google Scholar 

  22. Fong, K. C. et al. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).

    CAS  Google Scholar 

  23. Chiatti, O. et al. Quantum thermal conductance of electrons in a one-dimensional wire. Phys. Rev. Lett. 97, 056601 (2006).

    Article  CAS  Google Scholar 

  24. Molenkamp, L. W. et al. Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett. 68, 3765–3768 (1992).

    Article  CAS  Google Scholar 

  25. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article  CAS  Google Scholar 

  26. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  27. Mosso, N. et al. Thermal transport through single-molecule junctions. Nano Lett. 19, 7614–7622 (2019).

    Article  CAS  Google Scholar 

  28. Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019).

    Article  CAS  Google Scholar 

  29. Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    Article  CAS  Google Scholar 

  30. Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    Article  CAS  Google Scholar 

  31. Qu, J. F. et al. Johnson noise thermometry. Meas. Sci. Technol. 30, 112001 (2019).

    Article  CAS  Google Scholar 

  32. Fong, K. C. & Schwab, K. C. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).

    Google Scholar 

  33. Yiǧen, S. & Champagne, A. R. Wiedemann–franz relation and thermal-transistor effect in suspended graphene. Nano Lett. 14, 289–293 (2014).

    Article  Google Scholar 

  34. Sukhorukov, E. V. & Loss, D. Noise in multiterminal diffusive conductors: universality, nonlocality, and exchange effects. Phys. Rev. B 59, 13054–13066 (1999).

    Article  CAS  Google Scholar 

  35. Talanov, A. V., Waissman, J., Taniguchi, T., Watanabe, K. & Kim, P. High-bandwidth, variable-resistance differential noise thermometry. Rev. Sci. Instrum. 92, 014904 (2021).

    Article  CAS  Google Scholar 

  36. Pozderac, C. & Skinner, B. Relation between Johnson noise and heating power in a two-terminal conductor. Phys. Rev. B 104, L161403 (2021).

    Article  CAS  Google Scholar 

  37. Principi, A. & Vignale, G. Violation of the Wiedemann–Franz law in hydrodynamic electron liquids. Phys. Rev. Lett. 115, 056603 (2015).

    Article  Google Scholar 

  38. Lucas, A. & Das Sarma, S. Electronic hydrodynamics and the breakdown of the Wiedemann–Franz and Mott laws in interacting metals. Phys. Rev. B 97, 245128 (2018).

    Article  CAS  Google Scholar 

  39. Li, S., Levchenko, A. & Andreev, A. V. Hydrodynamic electron transport near charge neutrality. Phys. Rev. B 102, 075305 (2020).

    Article  CAS  Google Scholar 

  40. Xie, H.-Y. & Foster, M. S. Transport coefficients of graphene: interplay of impurity scattering, Coulomb interaction, and optical phonons. Phys. Rev. B 93, 195103 (2016).

    Article  Google Scholar 

  41. Lucas, A., Davison, R. A. & Sachdev, S. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals. Proc. Natl Acad. Sci. USA 113, 9463–9468 (2016).

    Article  CAS  Google Scholar 

  42. Zarenia, M., Principi, A. & Vignale, G. Disorder-enabled hydrodynamics of charge and heat transport in monolayer graphene. 2D Mater. 6, 035024 (2019).

    Article  CAS  Google Scholar 

  43. Zarenia, M., Smith, T. B., Principi, A. & Vignale, G. Breakdown of the Wiedemann–Franz law in AB-stacked bilayer graphene. Phys. Rev. B 99, 161407 (2019).

    Article  CAS  Google Scholar 

  44. Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 53001 (2018).

    Article  Google Scholar 

  45. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  46. Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    Article  CAS  Google Scholar 

  47. El Abbassi, M. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 14, 957–961 (2019).

    Article  CAS  Google Scholar 

  48. Yang, C., Qin, A., Tang, B. Z. & Guo, X. Fabrication and functions of graphene–molecule–graphene single-molecule junctions. J. Chem. Phys. 152, 120902 (2020).

    Article  CAS  Google Scholar 

  49. Ilani, S. & McEuen, P. L. Electron transport in carbon nanotubes. Annu. Rev. Condens. Matter Phys. 1, 1–25 (2010).

    Article  CAS  Google Scholar 

  50. Sfeir, M. Y. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312, 554–556 (2006).

    Article  CAS  Google Scholar 

  51. Cheng, A., Taniguchi, T., Watanabe, K., Kim, P. & Pillet, J. D. Guiding dirac fermions in graphene with a carbon nanotube. Phys. Rev. Lett. 123, 216804 (2019).

    Article  CAS  Google Scholar 

  52. McEuen, P., Bockrath, M., Cobden, D., Yoon, Y.-G. & Louie, S. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  CAS  Google Scholar 

  53. Garg, A., Rasch, D., Shimshoni, E. & Rosch, A. Large violation of the Wiedemann–Franz Law in Luttinger liquids. Phys. Rev. Lett. 103, 096402 (2009).

    Article  Google Scholar 

  54. Kane, C. L. & Fisher, M. P. A. Thermal transport in a Luttinger liquid. Phys. Rev. Lett. 76, 3192–3195 (1996).

    Article  CAS  Google Scholar 

  55. Li, M.-R. & Orignac, E. Heat conduction and Wiedemann–Franz law in disordered Luttinger liquids. Europhys. Lett. 60, 432–438 (2002).

    Article  CAS  Google Scholar 

  56. Pecker, S. et al. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nat. Phys. 9, 576–581 (2013).

    Article  CAS  Google Scholar 

  57. Shi, Z. et al. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat. Photonics 9, 515–519 (2015).

    Article  CAS  Google Scholar 

  58. Fazio, R., Hekking, F. W. J. & Khmelnitskii, D. E. Anomalous thermal transport in quantum wires. Phys. Rev. Lett. 80, 5611–5614 (1998).

    Article  CAS  Google Scholar 

  59. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  60. Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

    Article  Google Scholar 

  61. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  CAS  Google Scholar 

  62. Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    Article  Google Scholar 

  63. Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    Article  CAS  Google Scholar 

  64. Kokkoniemi, R. et al. Bolometer operating at the threshold for circuit quantum electrodynamics. Nature 586, 47–51 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Halperin, A. Lucas, S. D. Sarma, C. Mousatov, K. C. Fong and J. Crossno for helpful discussions, J. MacArthur for assistance with electronics design and construction, and M. Arino and H. Bartolomei for their assistance in the early stages of this work. This work was supported by ARO (W911NF-17-1-0574) for developing RF technology and characterization, and DOE (DE-SC0012260) for device fabrication and measurements. A.V.T. acknowledges support from the DoD through the NDSEG Fellowship Program. J.W. and P.K. acknowledge support from NSF (DMR-1922172) for data analysis. D.G.N. acknowledges support by the Office of Basic Energy Sciences of the DOE (DE-SC0017619). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant number JPMXP0112101001), JSPS KAKENHI (grant number JP20H00354) and CREST (JPMJCR15F3), JST. Work by K.A.M. at the Argonne National Laboratory was supported by the DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and P.K. conceived the experiments. J.W. performed the experiments and analysed the data. L.E.A. fabricated the NT–graphene devices. J.W., Y.J.S., and D.H.N. fabricated the graphene devices. M.R. fabricated the α-RuCl3 devices. X.F. and D.G.N. synthesized the bulk α-RuCl3 crystals. T.T. and K.W. synthesized the bulk hBN crystals. B.S. performed non-local noise calculations. K.A.M. developed the plasmon hopping theory. J.W., L.E.A., A.V.T., Z.Y., M.R., B.S., K.A.M. and P.K. discussed the results and interpretations. J.W. and P.K. wrote the manuscript in consultation with the other authors.

Corresponding author

Correspondence to Philip Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Pramod Reddy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waissman, J., Anderson, L.E., Talanov, A.V. et al. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry. Nat. Nanotechnol. 17, 166–173 (2022). https://doi.org/10.1038/s41565-021-01015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01015-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing