Nature | News

Graphene sandwich makes new form of ice

Unusual square structure suggests how flattened water can zip through tight channels.

Article tools

Rights & Permissions

In 'square ice', which has been seen between graphene sheets, water molecules lock flat in a right-angled formation. The structure is strikingly different from familiar hexagonal ice (right).

By flattening a droplet of water between two sheets of graphene, researchers have created a new form of ice. Just a few molecules thick, its atoms are locked in a square grid pattern1.

Nature Podcast

Geoff Marsh speaks to co-author Irina Grigorieva on what makes room-temperature 'square' ice possible.

You may need a more recent browser or to install the latest version of the Adobe Flash Plugin.

The discovery of ‘square ice’ highlights another remarkable property of graphene, which consists of flat, atom-thick sheets of carbon. Not only are graphene sheets remarkably stiff, strong and conductive, but they can also exert immense pressure on molecules trapped between them. This could explain why water seeps through stacks of graphene very quickly — a property that suggests the material could be used in desalination membranes to purify water.

Back in 2012, a team led by Andre Geim at the University of Manchester, UK — who shared the 2010 Nobel Prize in Physics for isolating and studying graphene — found that water vapour could pass through laminated sheets of graphene oxide, something that not even helium gas could manage2. Two years later, they showed that liquid water performed the same trick through stacks of graphene oxide, even though those stacks filtered out other molecules3.

Computer simulations suggested that water was forming layers of square ice between the graphene sheets. Pushing the ice from one end shunted all the molecules forward in concert, like carriages in a high-speed train. “But you never trust molecular-dynamics simulations,” says Geim. Hence the latest experiment.

Ice to meet you

Geim’s team dropped one microlitre of water on to a sheet of graphene, and then placed a second graphene wafer on top, all at room temperature. As the water slowly evaporated, the graphene sheets were squeezed together until they were less than one nanometre apart, trapping pockets of water in the sandwich.

Dynamics of 2D ice

The dynamics of 2D ice as seen directly in a transmission electron microscope. The video is an accelerated time sequence of 100 frames recorded over 4 minutes.

Algara-Siller et al.

Transmission electron microscopy revealed that these pockets contained square ice. “It’s not totally unexpected,” says Alan Soper, a physicist at the Rutherford Appleton Laboratory in Harwell, UK, who wrote a News & Views article4 that accompanies the report of the discovery, which is published in Nature1. When water gathers into small clusters of just eight molecules, for example, it forms a cubic structure. “But it’s never been observed in such an extended layer,” he says.

Soper reckons that square ice qualifies as a new crystalline phase of ice, joining 17 others that have already been observed.

Flat hunting

Square ice is strikingly different from normal ice. In a single, V-shaped water molecule (H2O), an oxygen atom is connected to two hydrogen atoms by strong bonds. But it also forms weaker attractions to hydrogen atoms in two neighbouring water molecules. In ice, these four bonds are usually arranged in a tetrahedral (pyramid) shape.

But in a layer of square ice, all the atoms lie in a flat plane with a right angle between each oxygen–hydrogen bond. Geim’s patches of square ice contained one, two or three of these layers, with oxygen atoms in adjacent layers sitting directly on top of one another.

The team calculated that the graphene sheets must be exerting more than 10,000 times atmospheric pressure to flatten water in this way. “It was a surprise the pressure was so high,” says Geim. That pressure is generated when the graphene’s carbon atoms get close enough to distort each other’s electron clouds. This causes a mutual attraction, known as the van der Waals force, between carbon atoms in adjacent graphene layers. “It’s like having millions of little springs holding them together,” says Soper.

Geim thinks that square ice could turn up in other tight spaces, such as the interiors of nanotubes. And pinning down its properties should help the development of improved desalination filters based on graphene, he adds. “Finding out how the water behaves in a capillary is a big part of what we need to do to make a good filter,” says Geim. “This is a very important step.”

Journal name:


  1. Algara-Siller, G. et al. Nature 519, 443445 (2015).

  2. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A, K. Science 335, 442444 (2012).

  3. Joshi, R. K. et al. Science 343, 752754 (2014).

  4. Soper, A. K. Nature 519, 417418 (2015).

For the best commenting experience, please login or register as a user and agree to our Community Guidelines. You will be re-directed back to this page where you will see comments updating in real-time and have the ability to recommend comments to other users.


Commenting is currently unavailable.

sign up to Nature briefing

What matters in science — and why — free in your inbox every weekday.

Sign up



Nature Podcast

Our award-winning show features highlights from the week's edition of Nature, interviews with the people behind the science, and in-depth commentary and analysis from journalists around the world.