Volume 2 Issue 2 February 2017

Volume 2 Issue 2

The costs of going solo

Energy storage coupled with solar panels is increasingly viewed as a way for homes to cut reliance on utilities. Exploiting data from real homes in Texas, USA, Fares and Webber investigate the impacts of solar energy storage, and find that although peak demand could be reduced, average annual consumption and emissions may actually increase.

See Fares and Webber 2, 17001 (2017) and News & Views by Eric Hittinger, article 17006.

Image: Alamy Stock Photo. Cover design: David Shand.

Editorial

  • Editorial |

    Recent announcements highlight the increasing competitiveness of renewable electricity sources and signal that the need for subsidies may be approaching an end.

Comment

  • Comment |

    Private sector investments in African power generation play an increasingly important role in addressing the continent's electricity supply shortages. Our analysis of investment trends in sub-Saharan Africa reveals some key success factors.

    • Anton Eberhard
    • , Katharine Gratwick
    • , Elvira Morella
    •  & Pedro Antmann

Research Highlights

News & Views

  • News and Views |

    Conventional positive electrode materials for lithium-ion batteries, such as intercalation and conversion compounds, feature a host structure to reversibly insert and conduct lithium ions. Now, electrochemically activated transition metal oxide-lithium fluoride composite materials are shown to be a promising class of positive electrodes.

    • Alexis Grimaud
  • News and Views |

    The combined effect of increased variability of demand due to distributed generation and domestic storage deployment represents a new feature in modern electricity systems. A recent study shows that while storage can reduce peak demand, it could also increase overall consumption and electricity system emissions.

    • Eric Hittinger
  • News and Views |

    Thermoelectric converters built with high thermoelectric activity p-type and n-type materials have the potential to replace mechanical heat-to-electricity converters. Now, efficient n-type SnSe has been prepared, ready to complement its previously reported p-type counterpart.

    • Anke Weidenkaff

Research

  • Article |

    Solar water splitting is often performed in highly corrosive conditions, presenting materials stability challenges. Gu et al. show that an efficient and stable hydrogen-producing photocathode can be realized through the application of a graded catalytic–protective layer on top of the photoabsorber.

    • Jing Gu
    • , Jeffery A. Aguiar
    • , Suzanne Ferrere
    • , K. Xerxes Steirer
    • , Yong Yan
    • , Chuanxiao Xiao
    • , James L. Young
    • , Mowafak Al-Jassim
    • , Nathan R. Neale
    •  & John A. Turner
  • Article |

    Despite their impressive performance, more efforts are required to develop industrially scalable perovskite solar cells from less toxic solvents. Towards that aim, this study presents the use of colloidal nanoparticle inks for room-temperature fabrication of CsPbBr3 solar cells.

    • Quinten A. Akkerman
    • , Marina Gandini
    • , Francesco Di Stasio
    • , Prachi Rastogi
    • , Francisco Palazon
    • , Giovanni Bertoni
    • , James M. Ball
    • , Mirko Prato
    • , Annamaria Petrozza
    •  & Liberato Manna
  • Article |

    Understanding surface carrier dynamics enables the design of optimal optoelectronic devices. Yang et al. find that surface recombination limits the total carrier lifetime in polycrystalline lead iodide perovskite films, meaning recombination at surfaces is more important than within and between grains.

    • Ye Yang
    • , Mengjin Yang
    • , David T. Moore
    • , Yong Yan
    • , Elisa M. Miller
    • , Kai Zhu
    •  & Matthew C. Beard
  • Article |

    Positive electrode materials for lithium-ion batteries feature lithium element and lithium-ion conduction paths. Here the authors report transition metal monoxides that contain neither the intrinsic lithium nor conduction channels for high-capacity positive electrode materials.

    • Sung-Kyun Jung
    • , Hyunchul Kim
    • , Min Gee Cho
    • , Sung-Pyo Cho
    • , Byungju Lee
    • , Hyungsub Kim
    • , Young-Uk Park
    • , Jihyun Hong
    • , Kyu-Young Park
    • , Gabin Yoon
    • , Won Mo Seong
    • , Yongbeom Cho
    • , Myoung Hwan Oh
    • , Haegyeom Kim
    • , Hyeokjo Gwon
    • , Insang Hwang
    • , Taeghwan Hyeon
    • , Won-Sub Yoon
    •  & Kisuk Kang
  • Article |

    Tariff structures and network constraints might incentivize storing solar energy in the home to reduce reliance on utilities. This study shows that storing solar energy rather than exporting it to the utility grid could increase electricity consumption as well as CO2, SO2 and NOx emissions.

    • Robert L. Fares
    •  & Michael E. Webber

Corrections