Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Introducing genetically encoded aldehydes into proteins

Abstract

Methods for introducing bioorthogonal functionalities into proteins have become central to protein engineering efforts. Here we describe a method for the site-specific introduction of aldehyde groups into recombinant proteins using the 6-amino-acid consensus sequence recognized by the formylglycine-generating enzyme. This genetically encoded 'aldehyde tag' is no larger than a His6 tag and can be exploited for numerous protein labeling applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sulfatase motif can serve as an aldehyde tag for site-specific protein modification.
Figure 2: Selective labeling of aldehyde-tagged proteins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Schmidt, B., Selmer, T., Ingendoh, A. & von Figura, K. Cell 82, 271–278 (1995).

    Article  CAS  Google Scholar 

  2. Cosma, M.P. et al. Cell 113, 445–456 (2003).

    Article  CAS  Google Scholar 

  3. Dierks, T. et al. Cell 113, 435–444 (2003).

    Article  CAS  Google Scholar 

  4. Dierks, T., Lecca, M.R., Schlotterhose, P., Schmidt, B. & von Figura, K. EMBO J. 18, 2084–2091 (1999).

    Article  CAS  Google Scholar 

  5. Landgrebe, J., Dierks, T., Schmidt, B. & von Figura, K. Gene 316, 47–56 (2003).

    Article  CAS  Google Scholar 

  6. Gilmore, J.M., Scheck, R.A., Esser-Kahn, A.P., Joshi, N.S. & Francis, M.B. Angew. Chem. Int. Edn Engl. 45, 5307–5311 (2006).

    Article  CAS  Google Scholar 

  7. Link, A.J., Mock, M.L. & Tirrell, D.A. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    Article  CAS  Google Scholar 

  8. Chen, I., Howarth, M., Lin, W.Y. & Ting, A.Y. Nat. Methods 2, 99–104 (2005).

    Article  CAS  Google Scholar 

  9. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  10. Wang, L., Xie, J. & Schultz, P.G. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  11. Clarke, K.M., Mercer, A.C., La Clair, J.J. & Burkart, M.D. J. Am. Chem. Soc. 127, 11234–11235 (2005).

    Article  CAS  Google Scholar 

  12. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    Article  CAS  Google Scholar 

  13. Yin, J., Liu, F., Li, X. & Walsh, C.T. J. Am. Chem. Soc. 126, 7754–7755 (2004).

    Article  CAS  Google Scholar 

  14. Dierks, T. et al. J. Biol. Chem. 273, 25560–25564 (1998).

    Article  CAS  Google Scholar 

  15. Harris, J.M. & Chess, R.B. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Francis and J. Rush for helpful discussions and D. King and A. Falick for MS expertise. I.S.C. was supported by a postdoctoral fellowship from the US National Institutes of Health. B.L.C. was supported by a predoctoral fellowship from the US National Science Foundation. This work was supported by a grant from the US National Institutes of Health to C.R.B. (GM59907).

Author information

Authors and Affiliations

Authors

Contributions

I.S.C. and B.L.C. carried out cloning, expression, purification and fluorescent tagging of the constructs. I.S.C. quantified conversion to fGly and performed multiple epitope assays. B.L.C. performed PEGylation assays. C.R.B. directed the project. All authors worked together to compose the manuscript.

Corresponding author

Correspondence to Carolyn R Bertozzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mass spectra confirming the presence of fGly in a tryptic peptide from ald13-Stf0. (PDF 222 kb)

Supplementary Fig. 2

Quantitation of the conversion of cysteine to formylglycine using mass spectrometry. (PDF 156 kb)

Supplementary Fig. 3

Quantitation of the conversion of cysteine to formylglycine using Alexa Fluor 647 C5-aminooxyacetamide labeling. (PDF 251 kb)

Supplementary Fig. 4

PEGylation of ald6-MBP with 2 kDa and 5 kDa aminooxy-PEG. (PDF 184 kb)

Supplementary Table 1

Oligonucleotides used in this study. (PDF 274 kb)

Supplementary Methods (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrico, I., Carlson, B. & Bertozzi, C. Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3, 321–322 (2007). https://doi.org/10.1038/nchembio878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing