Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Expanding the enzyme universe with genetically encoded unnatural amino acids

Abstract

The emergence of robust methods to expand the genetic code allows incorporation of non-canonical amino acids into the polypeptide chain of proteins, thus making it possible to introduce unnatural chemical functionalities in enzymes. In this Perspective, we show how this powerful methodology is used to create enzymes with improved and novel, even new-to-nature, catalytic activities. We provide an overview of the current state of the art, and discuss the potential benefits of developing and using enzymes with genetically encoded non-canonical amino acids compared with enzymes containing only canonical amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the two main strategies for in vivo incorporation of ncAAs.
Fig. 2: Ancillary functions of ncAAs.
Fig. 3: ncAAs as metal-binding and metal-coordinating residues.
Fig. 4: ncAAs as catalytic residues.

Similar content being viewed by others

References

  1. Wohlgemuth, R. Biocatalysis-key to sustainable industrial chemistry. Curr. Opin. Biotechnol. 21, 713–724 (2010).

    CAS  PubMed  Google Scholar 

  2. Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).

    CAS  PubMed  Google Scholar 

  3. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

    CAS  Google Scholar 

  4. Okeley, N. M. & van der Donk, W. A. Novel cofactors via post-translational modifications of enzyme active sites. Chem. Biol. 7, 159–171 (2000).

    Google Scholar 

  5. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    CAS  PubMed  Google Scholar 

  6. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    CAS  PubMed  Google Scholar 

  7. Young, D. D. & Schultz, P. G. Playing with the molecules of life. ACS Chem. Biol. 13, 854–870 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Agostini, F. et al. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew. Chem. Int. Ed. 56, 9680–9703 (2017).

    CAS  Google Scholar 

  9. Reetz, M. T., Kahakeaw, D. & Lohmer, R. Addressing the numbers problem in directed evolution. ChemBioChem 9, 1797–1804 (2008).

    CAS  PubMed  Google Scholar 

  10. Currin, A., Swainston, N., Day, P. J. & Kell, D. B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 1172–1239 (2015).

    CAS  PubMed  Google Scholar 

  11. Li, G., Dong, Y. & Reetz, M. T. Can machine learning revolutionize directed evolution of selective enzymes? Adv. Synth. Catal. 361, 2377–2386 (2019).

    CAS  Google Scholar 

  12. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

    CAS  PubMed  Google Scholar 

  13. Currin, A. et al. GeneORator: an effective strategy for navigating protein sequence space more efficiently through boolean OR-type DNA libraries. ACS Synth. Biol. 8, 1371–1378 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Srinivasan, G., James, C. M. & Krzycki, J. A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    CAS  PubMed  Google Scholar 

  15. Böck, A. et al. Selenocysteine: the 21st amino acid. Mol. Microbiol. 5, 515–520 (1991).

    PubMed  Google Scholar 

  16. Crick, F. H., Griffith, J. S. & Orgel, L. E. Codes without commas. Proc. Natl Acad. Sci. USA 43, 416–421 (1957).

    CAS  PubMed  Google Scholar 

  17. Johnson, J. A., Lu, Y. Y., Van Deventer, J. A. & Tirrell, D. A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 14, 774–780 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment-expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).

    CAS  PubMed  Google Scholar 

  19. Munier, R. & Cohen, G. N. Incorporation of structural analogues of amino acids into bacterial proteins during their synthesis in vivo. Biochim. Biophys. Acta 31, 378–391 (1959).

    CAS  PubMed  Google Scholar 

  20. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    CAS  PubMed  Google Scholar 

  21. Blight, S. K. et al. Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature 431, 333–335 (2004).

    CAS  PubMed  Google Scholar 

  22. Wan, W., Tharp, J. M. & Liu, W. R. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059–1070 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J. C., Liu, T., Wang, Y., Mehta, A. P. & Schultz, P. G. Enhancing protein stability with genetically encoded noncanonical amino acids. J. Am. Chem. Soc. 140, 15997–16000 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, Y., Hu, C., Xia, L. & Wang, J. Artificial metalloenzyme design with unnatural amino acids and non-native cofactors. ACS Catal. 8, 1851–1863 (2018).

    CAS  Google Scholar 

  25. Yang, H., Srivastava, P., Zhang, C. & Lewis, J. C. A general method for artificial metalloenzyme formation through strain-promoted azide-alkyne cycloaddition. ChemBioChem 15, 223–227 (2014).

    CAS  PubMed  Google Scholar 

  26. Srivastava, P., Yang, H., Ellis-Guardiola, K. & Lewis, J. C. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun. 6, 7789 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, H. et al. Evolving artificial metalloenzymes via random mutagenesis. Nat. Chem. 10, 318–324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).

    CAS  PubMed  Google Scholar 

  29. Lee, J. & Goodey, N. M. Catalytic contributions from remote regions of enzyme structure. Chem. Rev. 111, 7595–7624 (2011).

    CAS  PubMed  Google Scholar 

  30. Dominguez, M. A., Thornton, K. C., Melendez, M. G. & Dupureur, C. M. Differential effects of isomeric incorporation of fluorophenylalanines into PvuII endonuclease. Proteins Struct. Funct. Genet. 45, 55–61 (2001).

    CAS  PubMed  Google Scholar 

  31. Deepankumar, K. et al. Enhancing thermostability and organic solvent tolerance of ω-transaminase through global incorporation of fluorotyrosine. Adv. Synth. Catal. 356, 993–998 (2014).

    CAS  Google Scholar 

  32. Cirino, P. C., Tang, Y., Takahashi, K., Tirrell, D. A. & Arnold, F. H. Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnol. Bioeng. 83, 729–734 (2003).

    CAS  PubMed  Google Scholar 

  33. Hoesl, M. G. et al. Lipase congeners designed by genetic code engineering. ChemCatChem 3, 213–221 (2011).

    CAS  Google Scholar 

  34. Jackson, J. C., Duffy, S. P., Hess, K. R. & Mehl, R. A. Improving nature’s enzyme active site with genetically encoded unnatural amino acids. J. Am. Chem. Soc. 128, 11124–11127 (2006).

    CAS  PubMed  Google Scholar 

  35. Ma, H., Yang, X., Lu, Z., Liu, N. & Chen, Y. The ‘gate keeper’ role of Trp222 determines the enantiopreference of diketoreductase toward 2-chloro-1-phenylethanone. PLoS ONE 9, e103792 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Kolev, J. N., Zaengle, J. M., Ravikumar, R. & Fasan, R. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis. ChemBioChem 15, 1001–1010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morikubo, N. et al. Cation-π interaction in the polyolefin cyclization cascade uncovered by incorporating unnatural amino acids into the catalytic sites of squalene cyclase. J. Am. Chem. Soc. 128, 13184–13194 (2006).

    CAS  PubMed  Google Scholar 

  38. Ugwumba, I. N. et al. Improving a natural enzyme activity through incorporation of unnatural amino acids. J. Am. Chem. Soc. 133, 326–333 (2011).

    CAS  PubMed  Google Scholar 

  39. Xiao, H. et al. Exploring the potential impact of an expanded genetic code on protein function. Proc. Natl Acad. Sci. USA 112, 6961–6966 (2015).

    CAS  PubMed  Google Scholar 

  40. Stubbe, J. A., Nocera, D. G., Yee, C. S. & Chang, M. C. Y. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2201 (2003).

    CAS  PubMed  Google Scholar 

  41. Yee, C. S., Chang, M. C. Y., Ge, J., Nocera, D. G. & Stubbe, J. 2,3-Difluorotyrosine at position 356 of ribonucleotide reductase R2: a probe of long-range proton-coupled electron transfer. J. Am. Chem. Soc. 125, 10506–10507 (2003).

    CAS  PubMed  Google Scholar 

  42. Seyedsayamdost, M. R., Reece, S. Y., Nocera, D. G. & Stubbe, J. A. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579 (2006).

    CAS  PubMed  Google Scholar 

  43. Yokoyama, K., Uhlin, U. & Stubbe, J. Site-specific incorporation of 3-nitrotyrosine as a probe of pK a perturbation of redox-active tyrosines in ribonucleotide reductase. J. Am. Chem. Soc. 132, 8385–8397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Minnihan, E. C., Young, D. D., Schultz, P. G. & Stubbe, J. Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 133, 15942–15945 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Minnihan, E. C., Nocera, D. G. & Stubbe, J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc. Chem. Res. 46, 2524–2535 (2013).

    CAS  PubMed  Google Scholar 

  46. Oyala, P. H. et al. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example. J. Am. Chem. Soc. 138, 7951–7964 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, Y. et al. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J. Am. Chem. Soc. 137, 4594–4597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, Y. et al. Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid. Chem. Sci. 6, 3881–3885 (2015).

    CAS  PubMed Central  Google Scholar 

  49. Chen, L. et al. Use of a tyrosine analogue to modulate the two activities of a nonheme iron enzyme OvoA in ovothiol biosynthesis, cysteine oxidation versus oxidative C–S bond formation. J. Am. Chem. Soc. 140, 4604–4612 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, L. et al. Mechanistic studies of a nonheme iron enzyme OvoA in ovothiol biosynthesis using a tyrosine analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) propanoic acid (MeOTyr). ACS Catal. 9, 253–258 (2019).

    Google Scholar 

  51. Liu, X. et al. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew. Chem. Int. Ed. 51, 4312–4316 (2012).

    CAS  Google Scholar 

  52. Jones, L. H., Narayanan, A. & Hett, E. C. Understanding and applying tyrosine biochemical diversity. Mol. Biosyst. 10, 952–969 (2014).

    CAS  PubMed  Google Scholar 

  53. Zhou, Q. et al. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine. Angew. Chem. Int. Ed. 52, 1203–1207 (2013).

    CAS  Google Scholar 

  54. Liu, X. et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat. Chem. 10, 1201–1206 (2018).

    CAS  PubMed  Google Scholar 

  55. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS  PubMed  Google Scholar 

  56. Givens, R. S., Weber, J. F. W., Jung, A. H. & Park, C.-H. New photoprotecting groups: desyl and p-hydroxyphenacyl phosphate and carboxylate esters. Methods Enzymol. 291, 1–29 (1998).

    CAS  PubMed  Google Scholar 

  57. Deiters, A., Groff, D., Ryu, Y., Xie, J. & Schultz, P. G. A genetically encoded photocaged tyrosine. Angew. Chem. Int. Ed. 45, 2728–2731 (2006).

    CAS  Google Scholar 

  58. Wu, N., Deiters, A., Cropp, T. A., King, D. & Schultz, P. G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126, 14306–14307 (2004).

    CAS  PubMed  Google Scholar 

  59. Luo, J., Torres-Kolbus, J., Liu, J. & Deiters, A. Genetic encoding of photocaged tyrosines with improved light-activation properties for the optical control of protease function. ChemBioChem 18, 1442–1447 (2017).

    CAS  PubMed  Google Scholar 

  60. Lemke, E. A., Summerer, D., Geierstanger, B. H., Brittain, S. M. & Schultz, P. G. Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat. Chem. Biol. 3, 769–772 (2007).

    CAS  PubMed  Google Scholar 

  61. Nguyen, D. P. et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011).

    CAS  PubMed  Google Scholar 

  63. Hoppmann, C. et al. Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew. Chem. Int. Ed. 53, 3932–3936 (2014).

    CAS  Google Scholar 

  64. Tsai, Y.-H., Essig, S., James, J. R., Lang, K. & Chin, J. W. Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat. Chem. 7, 554–561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo, J., Samanta, S., Convertino, M., Dokholyan, N. V. & Deiters, A. Reversible and tunable photoswitching of protein function through genetic encoding of azobenzene amino acids in mammalian cells. ChemBioChem 19, 2178–2185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    CAS  PubMed  Google Scholar 

  67. Hayashi, T., Hilvert, D. & Green, A. P. Engineered metalloenzymes with non-canonical coordination environments. Chem. Eur. J. 24, 11821–11830 (2018).

    CAS  PubMed  Google Scholar 

  68. Lee, H. S. & Schultz, P. G. Biosynthesis of a site-specific DNA cleaving protein. J. Am. Chem. Soc. 130, 13194–13195 (2008).

    CAS  PubMed  Google Scholar 

  69. Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

    PubMed  Google Scholar 

  70. Roelfes, G. LmrR: a privileged scaffold for artificial metalloenzymes. Acc. Chem. Res. 52, 545–556 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bersellini, M. & Roelfes, G. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes. Org. Biomol. Chem. 15, 3069–3073 (2017).

    CAS  PubMed  Google Scholar 

  72. Drienovská, I. et al. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem. Sci. 8, 7228–7235 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Ségaud, N., Drienovská, I., Chen, J., Browne, W. R. & Roelfes, G. Artificial metalloproteins for binding and stabilization of a semiquinone radical. Inorg. Chem. 56, 13293–13299 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Mills, J. H. et al. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J. Am. Chem. Soc. 135, 13393–13399 (2013).

    CAS  PubMed  Google Scholar 

  75. Mills, J. H. et al. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proc. Natl Acad. Sci. USA 113, 15012–15017 (2016).

    CAS  PubMed  Google Scholar 

  76. Green, A. P., Hayashi, T., Mittl, P. R. E. & Hilvert, D. A chemically programmed proximal ligand enhances the catalytic properties of a heme enzyme. J. Am. Chem. Soc. 138, 11344–11352 (2016).

    CAS  PubMed  Google Scholar 

  77. Pott, M. et al. A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold. J. Am. Chem. Soc. 140, 1535–1543 (2018).

    CAS  PubMed  Google Scholar 

  78. Hayashi, T. et al. Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme. Nat. Catal. 1, 578–584 (2018).

    CAS  Google Scholar 

  79. Moore, E. J. & Fasan, R. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin. Tetrahedron 75, 2357–2363 (2019).

    CAS  PubMed  Google Scholar 

  80. Schmidt, B., Selmer, T., Ingendoh, A. & Figurat, Kvon A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82, 271–278 (1995).

    CAS  PubMed  Google Scholar 

  81. Schwede, T. F., Rétey, J. & Schulz, G. E. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Biochemistry 38, 5355–5361 (1999).

    CAS  PubMed  Google Scholar 

  82. Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).

    PubMed  Google Scholar 

  83. Mayer, C., Dulson, C., Reddem, E., Thunnissen, A.-M. W. H. & Roelfes, G. Directed evolution of a designer enzyme featuring an unnatural catalytic amino acid. Angew. Chem. Int. Ed. 58, 2083–2087 (2019).

    CAS  Google Scholar 

  84. Burke, A. J. et al. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 570, 219–223 (2019).

    CAS  PubMed  Google Scholar 

  85. Lindström, U. M. Stereoselective organic reactions in water. Chem. Rev. 102, 2751–2772 (2002).

    PubMed  Google Scholar 

  86. Lipshutz, B. H., Ghorai, S. & Cortes-Clerget, M. The hydrophobic effect applied to organic synthesis: recent synthetic chemistry “in water”. Chem. Eur. J. 24, 6672–6695 (2018).

    CAS  PubMed  Google Scholar 

  87. van der Helm, M. P., Klemm, B. & Eelkema, R. Organocatalysis in aqueous media. Nat. Rev. Chem. 3, 491–508 (2019).

    Google Scholar 

  88. Jeschek, M., Panke, S. & Ward, T. R. Artificial metalloenzymes on the verge of new-to-nature metabolism. Trends Biotechnol. 36, 60–72 (2018).

    CAS  PubMed  Google Scholar 

  89. Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mehl, R. A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    CAS  PubMed  Google Scholar 

  91. Brustad, E., Bushey, M. L., Brock, A., Chittuluru, J. & Schultz, P. G. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins. Bioorg. Med. Chem. Lett. 18, 6004–6006 (2008).

    CAS  PubMed  Google Scholar 

  92. Young, D. D. et al. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50, 1894–1900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Y.-S., Fang, X., Wallace, A. L., Wu, B. & Liu, W. R. A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J. Am. Chem. Soc. 134, 2950–2953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mukai, T. et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res. 38, 8188–8195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Johnson, D. B. F. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol. 7, 779–786 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Johnson, D. B. F. et al. Release factor one is nonessential in Escherichia coli. ACS Chem. Biol. 7, 1337–1344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mukai, T. et al. Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci. Rep. 5, 9699 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Allen, A. E. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    CAS  Google Scholar 

  100. Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Ed. 52, 5700–5725 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

G.R. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO, Vici grant 724.013.003) and the Ministry of Education Culture and Science (Gravitation programme no. 024.001.035).

Author information

Authors and Affiliations

Authors

Contributions

I.D. researched data for the article. I.D. and G.R. wrote the article and both authors contributed to the discussion, reviewing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Ivana Drienovská or Gerard Roelfes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drienovská, I., Roelfes, G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 3, 193–202 (2020). https://doi.org/10.1038/s41929-019-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0410-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing