Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frequency and amplitude control of cortical oscillations by phosphoinositide waves

A Corrigendum to this article was published on 18 March 2016

This article has been updated

Abstract

Rhythmicity is prevalent in the cortical dynamics of diverse single and multicellular systems. Current models of cortical oscillations focus primarily on cytoskeleton-based feedbacks, but information on signals upstream of the actin cytoskeleton is limited. In addition, inhibitory mechanisms—especially local inhibitory mechanisms, which ensure proper spatial and kinetic controls of activation—are not well understood. Here, we identified two phosphoinositide phosphatases, synaptojanin 2 and SHIP1, that function in periodic traveling waves of rat basophilic leukemia (RBL) mast cells. The local, phase-shifted activation of lipid phosphatases generates sequential waves of phosphoinositides. By acutely perturbing phosphoinositide composition using optogenetic methods, we showed that pulses of PtdIns(4,5)P2 regulate the amplitude of cyclic membrane waves while PtdIns(3,4)P2 sets the frequency. Collectively, these data suggest that the spatiotemporal dynamics of lipid metabolism have a key role in governing cortical oscillations and reveal how phosphatidylinositol 3-kinases (PI3K) activity could be frequency-encoded by a phosphatase-dependent inhibitory reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 5-phosphatases SHIP1 and synaptojanin 2 are required for wave dynamics.
Figure 2: Modulation of oscillation amplitude by PtdIns(4,5)P2.
Figure 3: Tuning oscillation cycle time by PI3K activity.
Figure 4: PI3Kδ is the main functional PI3K for oscillatory traveling waves.
Figure 5: PtdIns(3,4)P2, but not PtdIns(3,4,5)P3, is the timer of cortical oscillations.

Similar content being viewed by others

Change history

  • 11 February 2016

    In the version of this article initially published online, the name of author Qingsong Lin was misspelled as Qinsong Lin. The error has been corrected for the PDF and HTML versions of this article.

References

  1. Gerisch, G. & Hess, B. Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions. Proc. Natl. Acad. Sci. USA 71, 2118–2122 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Satoh, H., Ueda, T. & Kobatake, Y. Rhythmic contraction in the plasmodium of the myxomycete Physarum polycephalum in relation to the mitochondrial function. Cell Struct. Funct. 9, 37–44 (1984).

    Article  CAS  Google Scholar 

  3. Wymann, M.P. et al. Oscillatory motion in human neutrophils responding to chemotactic stimuli. Biochem. Biophys. Res. Commun. 147, 361–368 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Ueda, T. & Kobatake, Y. Quantitative analysis of changes in cell shape of Amoeba proteus during locomotion and upon responses to salt stimuli. Exp. Cell Res. 147, 466–471 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Satoh, H., Ueda, T. & Kobatake, Y. Oscillations in cell shape and size during locomotion and in contractile activities of Physarum polycephalum, Dictyostelium discoideum, Amoeba proteus and macrophages. Exp. Cell Res. 156, 79–90 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, A.C., Kaschube, M. & Wieschaus, E.F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Solon, J., Kaya-Copur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    Article  PubMed  Google Scholar 

  8. He, L., Wang, X., Tang, H.L. & Montell, D.J. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat. Cell Biol. 12, 1133–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levayer, R. & Lecuit, T. Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev. Cell 26, 162–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Ehrengruber, M.U., Coates, T.D. & Deranleau, D.A. Shape oscillations: a fundamental response of human neutrophils stimulated by chemotactic peptides? FEBS Lett. 359, 229–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, M., Wu, X. & De Camilli, P. Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proc. Natl. Acad. Sci. USA 110, 1339–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, C.-H., Tang, M., Shi, C., Iglesias, P.A. & Devreotes, P.N. An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat. Cell Biol. 15, 1307–1316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehrengruber, M.U., Deranleau, D.A. & Coates, T.D. Shape oscillations of human neutrophil leukocytes: characterization and relationship to cell motility. J. Exp. Biol. 199, 741–747 (1996).

    CAS  PubMed  Google Scholar 

  14. Arai, Y. et al. Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proc. Natl. Acad. Sci. USA 107, 12399–12404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Killich, T. et al. The locomotion, shape and pseudopodial dynamics of unstimulated Dictyostelium cells are not random. J. Cell Sci. 106, 1005–1013 (1993).

    PubMed  Google Scholar 

  16. Visser, G., Reinten, C., Coplan, P., Gilbert, D.A. & Hammond, K. Oscillations in cell morphology and redox state. Biophys. Chem. 37, 383–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Paluch, E., Piel, M., Prost, J., Bornens, M. & Sykes, C. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89, 724–733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).

  19. Meinhardt, H. & Gierer, A. Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 15, 321–346 (1974).

    CAS  PubMed  Google Scholar 

  20. Gerisch, G., Schroth-Diez, B., Müller-Taubenberger, A. & Ecke, M. PIP3 waves and PTEN dynamics in the emergence of cell polarity. Biophys. J. 103, 1170–1178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, X., Meier-Schellersheim, M., Yan, J. & Jin, T. Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J. Cell Biol. 178, 141–153 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Houk, A.R. et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175–188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, M. et al. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat. Commun. 5, 5175 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. BioEssays 22, 753–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Meinhardt, H. Out-of-phase oscillations and traveling waves with unusual properties: the use of three-component systems in biology. Physica D 199, 264–277 (2004).

    Article  Google Scholar 

  26. Allard, J. & Mogilner, A. Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 25, 107–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

  28. Kruse, K. & Jülicher, F. Oscillations in cell biology. Curr. Opin. Cell Biol. 17, 20–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gerhardt, M. et al. Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J. Cell Sci. 127, 4507–4517 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Takagi, S. & Ueda, T. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D 237, 420–427 (2008).

    Article  Google Scholar 

  31. Damen, J.E. et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93, 1689–1693 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nemoto, Y., Arribas, M., Haffner, C. & DeCamilli, P. Synaptojanin 2, a novel synaptojanin isoform with a distinct targeting domain and expression pattern. J. Biol. Chem. 272, 30817–30821 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Idevall-Hagren, O., Dickson, E.J., Hille, B., Toomre, D.K. & De Camilli, P. Optogenetic control of phosphoinositide metabolism. Proc. Natl. Acad. Sci. USA 109, E2316–E2323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Q. et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 13, 786–791 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheid, M.P. et al. Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473: studies using cells from SH2-containing inositol-5-phosphatase knockout mice. J. Biol. Chem. 277, 9027–9035 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat. Cell Biol. 9, 36–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Taniguchi, D. et al. Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc. Natl. Acad. Sci. USA 110, 5016–5021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Helgason, C.D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12, 1610–1620 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma, V.P. et al. Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr. Biol. 23, 2079–2089 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Ong, C.J. et al. Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood 110, 1942–1949 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Novák, B. & Tyson, J.J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wymann, M.P., Kernen, P., Deranleau, D.A. & Baggiolini, M. Respiratory burst oscillations in human neutrophils and their correlation with fluctuations in apparent cell shape. J. Biol. Chem. 264, 15829–15834 (1989).

    CAS  PubMed  Google Scholar 

  45. Gerisch, G., Ecke, M., Wischnewski, D. & Schroth-Diez, B. Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system. BMC Cell Biol. 12, 42 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Westendorf, C. et al. Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. Proc. Natl. Acad. Sci. USA 110, 3853–3858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ben-Chetrit, N. et al. Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci. Signal. 8, ra7 (2015).

    Article  PubMed  Google Scholar 

  48. Ali, K. et al. Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431, 1007–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Purvis, J.E. & Lahav, G. Encoding and decoding cellular information through signaling dynamics. Cell 152, 945–956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. De Camilli for inspiring this project and for valuable discussions and E. Feng and L. Cheung for technical assistance. This work was supported by the National Research Foundation (NRF) Singapore under its NRF Fellowship Program (M.W., NRF Award No. NRF-NRFF2011-09) and Mechanobiology Institute at National University of Singapore.

Author information

Authors and Affiliations

Authors

Contributions

M.W. and D.X. designed the experiments. D.X. performed the experiments and data analysis. S.X. assisted with imaging experiments and performed biochemistry experiments. Q.L. carried out mass spectrometry. S.G. and F.N. generated and tested reagents. M.W. and D.X. interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Min Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8. (PDF 0 kb)

Two-color TIRFM movie of cell coexpressing mCherry-SHIP1 (left) and FBP17-EGFP (middle) showing traveling waves.

SHIP1 waves (magenta) correlate with but lag behind FBP17 waves (green) in the merged view (right). The movie was acquired after antigen stimulation at 1 sec interval and plays at 15 frames per sec (15x real time). Scale bar: 5 μm. (AVI 5942 kb)

Two-color TIRFM movie of cell showing traveling waves of synaptojanin 2–mCherry (left) and FBP17-EGFP (middle)

Synaptojanin 2 waves (magenta) precisely overlap with FBP17 waves (green) in the merged panel (right). The movie was acquired after antigen stimulation at 2 sec intevals and plays at 7.5 frames per sec (15x real time). Scale bar: 5 μm. (AVI 3898 kb)

Three-color TIRFM movie of cell expressing FBP17-EGFP (left) and PI(4,5)P2-specific sensor (iRFP-PHPLCδ) (middle) showing traveling wave.

Wave is absent with cytosol marker mCherry-C1 (right). The movie was acquired after antigen stimulation at 2 sec intevals and plays at 30 frames per sec (60x real time). Scale bar: 5 μm. (AVI 7293 kb)

TIRFM movie of cells expressing FBP17-EGFP showing conversion of irregular pattern to regular recurring traveling waves by the addition of low dose wortmannin (0.5 μM).

The movie was acquired after antigen stimulation at 2 sec intervals and plays at 30 frames per sec (60x real time). Scale bar: 5 μm. (AVI 6185 kb)

TIRFM movie of cells expressing FBP17-EGFP shows increase in oscillation cycle time upon sequential treatment with 0.5 μM and 1 μM wortmannin.

The movie was acquired after antigen stimulation at 2 sec intervals and plays at 30 frames per sec (60x real time). Scale bar: 5 μm. (AVI 10363 kb)

Two-color TIRFM movie of cell coexpressing PI(3,4,5)P3-specific sensor (mCherry-PHGrp1) (left) and FBP17-EGFP (right).

Traveling wave of PI(3,4,5)P3 becomes much more obvious after addition of low dose wortmannin (0.5 μM). The movie was acquired after antigen stimulation at 2 sec intervals and plays at 30 frames per sec (60x real time). Scale bar: 5 μm. (AVI 6723 kb)

Two-color TIRFM movie of cell coexpressing PI(3,4)P2-specific sensor (RFP-PHTAPP1) (left) and FBP17-EGFP (right) showing traveling wave.

PI(3,4)P2 wave is phase-shifted compared to that of FBP17. The movie was acquired after antigen stimulation at 2 sec intervals and plays at 30 frames per sec (60x real time). Scale bar: 5 μm. (AVI 1180 kb)

Two-color TIRFM movie of mast cell coexpressing Tks5-EGFP (left) and mCherry-CIP4 (middle) showing traveling wave.

SHIP1 waves (magenta) correlate with but lag behind CIP4 waves (green) in the merged view (right). The movie was acquired after antigen stimulation at 0.5 sec intervals and plays at 30 frames per sec (15x real time). Scale bar: 5 μm. (AVI 8179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, D., Xiao, S., Guo, S. et al. Frequency and amplitude control of cortical oscillations by phosphoinositide waves. Nat Chem Biol 12, 159–166 (2016). https://doi.org/10.1038/nchembio.2000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing