Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tracking single molecules at work in living cells

Abstract

Methods for imaging and tracking single molecules conjugated with fluorescent probes, called single-molecule tracking (SMT), are now providing researchers with the unprecedented ability to directly observe molecular behaviors and interactions in living cells. Current SMT methods are achieving almost the ultimate spatial precision and time resolution for tracking single molecules, determined by the currently available dyes. In cells, various molecular interactions and reactions occur as stochastic and probabilistic processes. SMT provides an ideal way to directly track these processes by observing individual molecules at work in living cells, leading to totally new views of the biochemical and molecular processes used by cells whether in signal transduction, gene regulation or formation and disintegration of macromolecular complexes. Here we review SMT methods, summarize the recent results obtained by SMT, including related superresolution microscopy data, and describe the special concerns when SMT applications are shifted from the in vitro paradigms to living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic model of the dynamic PM obtained by SMT.
Figure 2: SMT revealed that class A GPCRs continually form dimers and disintegrate into monomers within fractions of a second.
Figure 3: The archipelago architecture of the FA proposed on the basis of the SMT results.
Figure 4: LAT, a key adaptor molecule of immune signal transduction, might work in various dynamic states, as suggested by SMT and superresolution microscopy.

Similar content being viewed by others

References

  1. Toomre, D. & Bewersdorf, J. A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Kusumi, A., Shirai, Y.M., Koyama-Honda, I., Suzuki, K.G.N. & Fujiwara, T.K. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett. 584, 1814–1823 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Haw, M. Middle World: the Restless Heart of Matter and Life (Macmillan, New York, 2007).

    Book  Google Scholar 

  5. Murakoshi, H. et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. USA 101, 7317–7322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kasai, R.S. et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192, 463–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki, K.G.N. et al. GPI-anchored receptor clusters transiently recruit Lyn and G for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177, 717–730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, K.G.N.K., Fujiwara, T.K., Edidin, M.M. & Kusumi, A. Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kasai, R.S. & Kusumi, A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr. Opin. Cell Biol. 27, 78–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hinner, M.J. & Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Nishimura, H. et al. Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol. 202, 967–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ha, T. & Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63, 595–617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, Q. et al. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 43, 1044–1056 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Ries, J. & Schwille, P. Fluorescence correlation spectroscopy. Bioessays 34, 361–368 (2012).

    Article  PubMed  Google Scholar 

  20. Pampaloni, F., Reynaud, E.G. & Stelzer, E.H.K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Carlton, P.M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl. Acad. Sci. USA 107, 16016–16022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oida, T., Sako, Y. & Kusumi, A. Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells. Biophys. J. 64, 676–685 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sahl, S.J. & Moerner, W.E. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol. 23, 778–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singer, S.J. & Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. Kusumi, A., Suzuki, K.G.N., Kasai, R.S., Ritchie, K. & Fujiwara, T.K. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci. 36, 604–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Hiramoto-Yamaki, N. et al. Ultrafast diffusion of a fluorescent cholesterol analog in compartmentalized plasma membranes. Traffic 15, 583–612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kusumi, A. et al. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin. Cell Dev. Biol. 23, 126–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Morone, N. et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell Biol. 174, 851–862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalay, Z., Fujiwara, T.K. & Kusumi, A. Cellular Domains (ed. Nabi, I.R.) 3–22 (Wiley, New York, 2011).

    Book  Google Scholar 

  33. Kusumi, A. et al. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu. Rev. Cell Dev. Biol. 28, 215–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Kalay, Z., Fujiwara, T.K. & Kusumi, A. Confining domains lead to reaction bursts: reaction kinetics in the plasma membrane. PLoS ONE 7, e32948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaqaman, K. & Grinstein, S. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol. 22, 515–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, D., Yu, Y., Lee, H., Wanner, B.L. & Ritchie, K. Dynamics of the serine chemoreceptor in the Escherichia coli inner membrane: a high-speed single-molecule tracking study. Biophys. J. 106, 145–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murase, K. et al. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86, 4075–4093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jaqaman, K. et al. Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146, 593–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kusumi, A., Koyama-Honda, I. & Suzuki, K.G.N. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Parton, R.G. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14, 141–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Owen, D.M., Williamson, D., Rentero, C. & Gaus, K. Quantitative microscopy: protein dynamics and membrane organisation. Traffic 10, 962–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Simons, K. & Sampaio, J.L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Viola, A. & Gupta, N. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat. Rev. Immunol. 7, 889–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W. & Eggeling, C. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc. Natl. Acad. Sci. USA 107, 6829–6834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suzuki, K.G.N. et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol. 8, 774–783 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783–787 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Hern, J.A. et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. USA 107, 2693–2698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Calebiro, D. et al. Single-molecule analysis of fluorescently labeled G protein–coupled receptors reveals complexes with distinct dynamics and organization. Proc. Natl. Acad. Sci. USA 110, 743–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Veatch, S.L. et al. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS ONE 7, e31457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maurice, P., Kamal, M. & Jockers, R. Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol. Sci. 32, 514–520 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. James, J.R., Oliveira, M.I., Carmo, A.M., Iaboni, A. & Davis, S.J. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods 3, 1001–1006 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Meyer, B.H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103, 2138–2143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brameshuber, M. et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brodsky, F.M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol. 28, 309–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Ulbrich, M.H. & Isacoff, E.Y. Subunit counting in membrane-bound proteins. Nat. Methods 4, 319–321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Das, S.K., Darshi, M., Cheley, S., Wallace, M.I. & Bayley, H. Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. ChemBioChem 8, 994–999 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Soeller, C., Crossman, D., Gilbert, R. & Cannell, M.B. Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc. Natl. Acad. Sci. USA 104, 14958–14963 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arant, R.J. & Ulbrich, M.H. Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. ChemPhysChem 15, 600–605 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. McMahon, H.T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, M.J., Perrais, D. & Merrifield, C.J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Posor, Y. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jones, S.A., Shim, S.-H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rothberg, K.G., Heuser, J.E., Donzell, W.C. & Ying, Y.S. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Parton, R.G. & del Pozo, M.A. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14, 98–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Gambin, Y. et al. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. eLife 3, e01434 (2014).

    Article  PubMed Central  Google Scholar 

  69. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shibata, A.C.E.A. et al. Archipelago architecture of the focal adhesion: membrane molecules freely enter and exit from the focal adhesion zone. Cytoskeleton (Hoboken) 69, 380–392 (2012).

    Article  CAS  Google Scholar 

  72. Rossier, O. et al. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14, 1057–1067 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Shibata, A.C.E. et al. Rac1 recruitment to the archipelago structure of the focal adhesion through the fluid membrane as revealed by single-molecule analysis. Cytoskeleton (Hoboken) 70, 161–177 (2013).

    Article  CAS  Google Scholar 

  74. Ribrault, C., Sekimoto, K. & Triller, A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nat. Rev. Neurosci. 12, 375–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Frost, N.A., Shroff, H., Kong, H., Betzig, E. & Blanpied, T.A. Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67, 86–99 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Izeddin, I. et al. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6, e15611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Opazo, P., Sainlos, M. & Choquet, D. Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr. Opin. Neurobiol. 22, 453–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Triller, A. & Sheng, M. Synaptic structure and function. Curr. Opin. Neurobiol. 22, 363–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dustin, M.L. & Depoil, D. New insights into the T cell synapse from single molecule techniques. Nat. Rev. Immunol. 11, 672–684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Purbhoo, M.A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36 (2010).

    Article  PubMed  CAS  Google Scholar 

  87. Williamson, D.J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Larghi, P. et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat. Immunol. 14, 723–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Balagopalan, L., Barr, V.A., Kortum, R.L., Park, A.K. & Samelson, L.E. Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling. J. Immunol. 190, 3849–3853 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. James, J.R. et al. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc. Natl. Acad. Sci. USA 104, 17662–17667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rossy, J., Owen, D.M., Williamson, D.J., Yang, Z. & Gaus, K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat. Immunol. 14, 82–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Manz, B.N., Jackson, B.L., Petit, R.S., Dustin, M.L. & Groves, J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl. Acad. Sci. USA 108, 9089–9094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kusumi, A. & Suzuki, K. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta 1746, 234–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Grasberger, B., Minton, A.P., DeLisi, C. & Metzger, H. Interaction between proteins localized in membranes. Proc. Natl. Acad. Sci. USA 83, 6258–6262 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pierce, S.K. & Liu, W. The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat. Rev. Immunol. 10, 767–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, W., Sohn, H.W., Tolar, P. & Pierce, S.K. It's all about change: the antigen-driven initiation of B-cell receptor signaling. Cold Spring Harb. Perspect. Biol. 2, a002295 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Andrews, N.L. et al. Actin restricts FceRI diffusion and facilitates antigen-induced receptor immobilization. Nat. Cell Biol. 10, 955–963 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Andrews, N.L. et al. Small, mobile FceRI receptor aggregates are signaling competent. Immunity 31, 469–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Larson, D.R., Singer, R.H. & Zenklusen, D. A single molecule view of gene expression. Trends Cell Biol. 19, 630–637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, G.-W. & Xie, X.S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pitchiaya, S., Heinicke, L.A., Custer, T.C. & Walter, N.G. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem. Rev. 114, 3224–3265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Park, H.Y. et al. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, B., Chao, J.A. & Singer, R.H. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 102, 2936–2944 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hocine, S., Raymond, P., Zenklusen, D., Chao, J.A. & Singer, R.H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10, 119–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Zhao, Z.W. et al. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc. Natl. Acad. Sci. USA 111, 681–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Yamagishi, M., Ishihama, Y., Shirasaki, Y., Kurama, H. & Funatsu, T. Single-molecule imaging of b-actin mRNAs in the cytoplasm of a living cell. Exp. Cell Res. 315, 1142–1147 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Buxbaum, A.R., Wu, B. & Singer, R.H. Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Elf, J., Li, G.-W. & Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gebhardt, J.C.M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eggeling, C., Willig, K.I. & Barrantes, F.J. STED microscopy of living cells—new frontiers in membrane and neurobiology. J. Neurochem. 126, 203–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Tanaka, K.A.K. et al. Membrane molecules mobile even after chemical fixation. Nat. Methods 7, 865–866 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A.H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Ritter, J.G., Veith, R., Veenendaal, A., Siebrasse, J.P. & Kubitscheck, U. Light sheet microscopy for single molecule tracking in living tissue. PLoS ONE 5, e11639 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Schmidt, T., Schutz, G.J., Baumgartner, W., Gruber, H.J. & Schindler, H. Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hinterdorfer, P., Garcia-Parajo, M.F.M. & Dufrêne, Y.F.Y. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc. Chem. Res. 45, 327–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Pertsinidis, A., Zhang, Y. & Chu, S. Subnanometre single-molecule localization, registration and distance measurements. Nature 466, 647–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Kanemasa for his help in preparing figures and all of the members of the Kusumi lab for extensive discussion. This research was supported in part by Grants-in-Aid for scientific research and for priority areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to R.S.K., T.K.F., T.A.T. and A.K. The WPI-iCeMS of Kyoto University is supported by the World Premiere Research Center Initiative of the MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kusumi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusumi, A., Tsunoyama, T., Hirosawa, K. et al. Tracking single molecules at work in living cells. Nat Chem Biol 10, 524–532 (2014). https://doi.org/10.1038/nchembio.1558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing