Research articles

Filter By:

  • Organic molecular crystals with guest-occupied cavities are often observed, but the cavities tend to collapse when the guests are removed. Now, the porous domain of a crystalline solvate has been stabilized by formation of a cocrystal with a second molecule whose size and shape matches those of the unstable voids.

    • Marc A. Little
    • Michael E. Briggs
    • Andrew I. Cooper
    Article
  • In vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of autonomous synthetic systems. Now, a methodology has been developed to construct an enzymatic reaction network producing oscillations of active trypsin. The modular approach allows amplification or analog-to-digital conversion of the oscillations, and control over a self-assembly process.

    • Sergey N. Semenov
    • Albert S. Y. Wong
    • Wilhelm T. S. Huck
    Article
  • A highly enantio- and diastereoselective route to complex indanes via a 5-endo-trig Michael reaction catalysed by a chiral ammonium salt is described. The preference for this formally disfavoured cyclization over a formally favoured alternative shows that geometric and stereoelectronic constraints may not be decisive in the observed outcome of irreversible ring closing reactions.

    • Craig P. Johnston
    • Abhishek Kothari
    • Martin D. Smith
    Article
  • The synthetic challenge of constructing arrays of contiguous, chlorinated stereogenic centres in natural products, like the chlorosulfolipids, has sparked recent interest in new methods for stereocontrolled chlorination. Now the first catalytic, syn-stereospecific dichlorination of alkenes, employing a redox-active main group element as a group transfer catalyst is described.

    • Alexander J. Cresswell
    • Stanley T.-C. Eey
    • Scott E. Denmark
    Article
  • Porous-alumina filter discs typically used to prepare graphene-oxide films are found to corrode during filtration and release aluminium ions that crosslink the negatively charged sheets and make the films insoluble in water. In contrast, aluminium-free graphene-oxide films are significantly weaker and readily disintegrate in water.

    • Che-Ning Yeh
    • Kalyan Raidongia
    • Jiaxing Huang
    Article
  • The maximum attainable capacity of the Li–O2 battery is limited by the passivation of its cathode by electronically insulating Li2O2. It is now shown that electrolyte additives, which activate solution-mediated growth of Li2O2, make it possible to circumvent this fundamental limitation, leading to design rules for additive selection.

    • Nagaphani B. Aetukuri
    • Bryan D. McCloskey
    • Alan C. Luntz
    Article
  • Amines are essential in a number of research areas, but a general, selective and step-efficient synthesis has been elusive. Now, the use of a single copper catalyst to transform alkynes into enamines, α-chiral branched alkylamines, and linear alkylamines is described. These transformations have been applied in the preparation of a selection of current pharmaceutical agents.

    • Shi-Liang Shi
    • Stephen L. Buchwald
    Article
  • The mammalian oocyte cell cycle is regulated by massive zinc fluxes which culminate in coordinated ejections of ~1010 zinc ions at fertilization. Four single-cell physiochemical approaches (live-cell fluorescence imaging, scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy and tomography) reveal that these ‘zinc sparks’ originate from thousands of cortical vesicles which each release ~106 zinc ions.

    • Emily L. Que
    • Reiner Bleher
    • Thomas V. O'Halloran
    Article
  • Peptides that self-assemble into nanostructures are of interest for many applications, including ones relevant to cosmetics, food, biomedicine and nanotechnology. Now, computational tools have been developed that enable peptide sequence space to be rapidly searched for supramolecular properties and this approach has been used to identify unprotected tripeptide hydrogelators.

    • Pim W. J. M. Frederix
    • Gary G. Scott
    • Tell Tuttle
    Article
  • Crystals of hexachlorobenzene easily break when pressed on the (100) face, but bend to 360° without disintegrating when stress is applied on the (001) face. In the latter case this extraordinary malleability arises from the segregation and sliding of layers of molecules in the crystal, a process in which halogen–halogen interactions are broken and reformed.

    • Manas K. Panda
    • Soumyajit Ghosh
    • Panče Naumov
    Article
  • A method for rapidly screening small-molecule inhibitors of amyloid assembly has been developed. This method uses electrospray ionization–ion mobility spectrometry–mass spectrometry to detect and identify the type of inhibition. A screen of this nature could help in the discovery of therapeutics for numerous diseases associated with aberrant protein aggregation.

    • Lydia M. Young
    • Janet C. Saunders
    • Alison E. Ashcroft
    Article
  • Gas sorption and separation in porous materials is dependent on the host–guest binding within any given system. Now, the molecular details of cooperative binding between small hydrocarbons and a metal–organic framework, NOTT-300, at multiple sites have been elucidated by complementary scattering and diffraction techniques. This material is also capable of separating C1 and C2 hydrocarbons under ambient conditions.

    • Sihai Yang
    • Anibal J. Ramirez-Cuesta
    • Martin Schröder
    Article
  • The stereochemical outcome of enzyme-catalysed reactions with physiological substrates is typically governed by the well-defined geometry of the enzyme active site. Now, a rare example is reported where the substrate controls the stereoselectivity of a Michael-type addition during lanthipeptide biosynthesis.

    • Weixin Tang
    • Gonzalo Jiménez-Osés
    • Wilfred A. van der Donk
    Article
  • The pseudopterosins are a family of natural products whose interesting anti-inflammatory and pain-relieving properties have inspired many synthetic approaches. Now, an unusual approach that starts with an axially chiral hydrocarbon that engages in a triple Diels–Alder sequence has been shown to result in the shortest total synthesis of a pseudopterosin so far.

    • Christopher G. Newton
    • Samuel L. Drew
    • Michael S. Sherburn
    Article
  • The ability to achieve strong molecular recognition in water is a key challenge for supramolecular chemistry. Now, halogen bonding — the attractive interaction between an electron-deficient halogen atom and a Lewis base — has been shown to be superior to hydrogen bonding for strong anion binding in water. Ripple image: © PhotoDisc/Getty Images.

    • Matthew J. Langton
    • Sean W. Robinson
    • Paul D. Beer
    Article
  • The use of β-lactam antibiotics is severely threatened by metallo-β-lactamases (MBLs), which contribute to the development of resistance. Now, crystallographic and solution studies reveal that recently reported MBL inhibition with a rhodanine can be attributed to fragmentation and complex formation with the resulting thioenolate.

    • Jürgen Brem
    • Sander S. van Berkel
    • Christopher J. Schofield
    Article
  • Modifying or functionalizing transition metal dichalcogenides (TMDs) allows their properties to be altered and controlled. Now, non-defect-mediated covalent functionalization of single-layer semiconducting TMDs such as MoS2, WS2 and MoSe2 has been demonstrated by reacting them with organohalides, utilizing the excess charge in the 1T metallic phase.

    • Damien Voiry
    • Anandarup Goswami
    • Manish Chhowalla
    Article
  • The mechanism of O2 reduction in aprotic solvents is important for the operation of Li–O2 batteries but is not well understood. A single unified mechanism is now described that regards previous models as limiting cases. It shows that the solubility of the intermediate LiO2 is a critical factor that dictates the mechanism, emphasizing the importance of the solvent.

    • Lee Johnson
    • Chunmei Li
    • Peter G. Bruce
    Article
  • Kinetic, X-ray crystallographic and computational studies have enabled the formulation of a comprehensive mechanistic picture of the enantioselective sulfenofunctionalization reaction of alkenes and a stereochemical model for the origin of the enantioselectivity. The experiments resulted in the development of 2,6-dialkylaryl sulfenylating agents, improving the enantioselectivity of the reaction to >99:1 for γ-alkenols.

    • Scott E. Denmark
    • Eduard Hartmann
    • Hao Wang
    Article