Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal

Abstract

The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen–halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and surface texture of an HCB crystal bent manually by the three-point method.
Figure 2: Nanoindentation at fixed load (2 mN) of two HCB crystals bent normal to the (001) face.
Figure 3: Optical micrograph and diffraction images recorded for a bent HCB crystal and the unit cell across the kink probed with a micro-X-ray beam show small changes in the unit cell upon bending.
Figure 4: Spatial vibrational spectroscopic analysis of bent crystals of HCB by micro-IR and micro-Raman spectroscopy.
Figure 5: Schematic representation of plastic bending of single crystals of HCB and the consequences at different levels of structural hierarchy.

Similar content being viewed by others

References

  1. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    CAS  PubMed  Google Scholar 

  2. Zhu, L., Al-Kaysi, R. O., Dillon, R. J., Tham, F. S. & Bardeen, C. J. Crystal structures and photophysical properties of 9-anthracene carboxylic acid derivatives for photomechanical applications. Cryst. Growth Des. 11, 4975–4983 (2011).

    CAS  Google Scholar 

  3. Kim, T., Al-Muhanna, M. K., Al-Suwaidan, S. D., Al-Kaysi, R. O. & Bardeen, C. J. Photoinduced curling of organic molecular crystal nanowires. Angew. Chem. Int. Ed. 52, 6889–6893 (2013).

    CAS  Google Scholar 

  4. Koshima, H., Matsuo, R., Matsudomi, M., Uemura, Y. & Shiro, M. Light-driven bending crystals of salicylidenephenylethylamines in enantiomeric and racemate forms. Cryst. Growth Des. 13, 4330–4337 (2013).

    CAS  Google Scholar 

  5. Koshima, H., Nakaya, H., Uchimoto, H. & Ojima, N. Photomechanical motion of furylfulgide crystals. Chem. Lett. 41, 107–109 (2012).

    CAS  Google Scholar 

  6. Abakumov, G. A. & Nevodchikov, V. I. Termo- i fotomekhanicheskij ehffekty na kristallakh svobodnoradikal'nogo kompleksa. Dokl. Akad. Nauk 266, 1407–1410 (1982).

    CAS  Google Scholar 

  7. Lange, C. W. et al. Photomechanical properties of rhodium(I)-semiquinone complexes. The structure, spectroscopy, and magnetism of (3,6-di-tert-butyl-1,2-semiquinonato)dicarbonylrhodium(I). J. Am. Chem. Soc. 114, 4220–4222 (1992).

    CAS  Google Scholar 

  8. Pierpont, C. G. Bending crystals. Solid state photomechanical properties of transition metal complexes containing semiquinonate ligands. Proc. Indian Acad. Sci., Chem. Sci. 114, 247–254 (2002).

    CAS  Google Scholar 

  9. Reddy, C. M., Krishna, G. R. & Ghosh, S. Mechanical properties of molecular crystals—applications to crystal engineering. CrystEngComm 12, 2296–2314 (2010).

    CAS  Google Scholar 

  10. Yakobson, B. I., Boldyreva, E. V. & Sidelnikov, A. A. A quantitative description of the bending deformation of single crystals induced by a photochemical reaction Proc. Sib. Dept. Acad. Sci. USSR 51, 6–10 (1989).

    Google Scholar 

  11. Boldyreva, E. V., Sidelnikov, A. A., Rukosuev, N. I., Chupakhin, A. P. & Lyakhov, N. Z. Photometer. Soviet Union Patent 1368654 (1985).

  12. Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. Dynamic single crystals: kinematic analysis of photoinduced crystal jumping (the photosalient effect). Angew. Chem. Int. Ed. 52, 9990–9995 (2013).

    CAS  Google Scholar 

  13. Sahoo, S. C., Panda, M. K., Nath, N. K. & Naumov, P. Biomimetic crystalline actuators: structure–kinematic aspects of the self-actuation and motility of thermosalient crystals. J. Am. Chem. Soc. 135, 12241–12251 (2013).

    CAS  PubMed  Google Scholar 

  14. Skoko, Ž., Zamir, S., Naumov, P. & Bernstein, J. The thermosalient phenomenon ‘jumping crystals’ and crystal chemistry of the anticholinergic agent oxitropium bromide. J. Am. Chem. Soc. 132, 14191–14202 (2010).

    CAS  PubMed  Google Scholar 

  15. Naumov, P. et al. Topochemistry and photomechanical effects in crystals of green fluorescent protein-like chromophores: effects of hydrogen bonding and crystal packing. J. Am. Chem. Soc. 132, 5845–5857 (2010).

    CAS  PubMed  Google Scholar 

  16. Koshima, H. & Ojima, N. Photomechanical bending of 4-aminoazobenzene crystals. Dyes Pigm. 92, 798–801 (2012).

    CAS  Google Scholar 

  17. Good, J. T., Burdett, J. J. & Bardeen, C. J. Using two-photon excitation to control bending motions in molecular-crystal nanorods. Small 5, 2902–2909 (2009).

    CAS  PubMed  Google Scholar 

  18. Sun, J-K. et al. Photoinduced bending of a large single crystal of a 1,2-bis(4-pyridyl)ethylene-based pyridinium salt powered by a [2 + 2] cycloaddition. Angew. Chem. Int. Ed. 52, 6653–6657 (2013).

    CAS  Google Scholar 

  19. Uchida, K. et al. Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem. Commun. 326–328 (2008).

  20. Bushuyev, O. S., Singleton, T. A. & Barrett, C. J. Fast, reversible, and general photomechanical motion in single crystals of various azo compounds using visible light. Adv. Mater. 25, 1796–1800 (2013).

    CAS  PubMed  Google Scholar 

  21. Stolow, R. D. & Larsen, J. W. The transient cylindrical ‘conformation’ of growing crystals of 2,5-di-t-butyl-1,4-dimethoxybenzene. Chem. Ind. 449–449 (1963).

  22. Shtukenberg, A. G., Punin, Y. O., Gujral, A. & Kahr, B. Growth actuated bending and twisting of single crystals. Angew. Chem. Int. Ed. 53, 672–699 (2014).

    CAS  Google Scholar 

  23. Cui, X., Rohl, A. L., Shtukenberg, A. & Kahr, B. Twisted aspirin crystals. J. Am. Chem. Soc. 135, 3395−3398 (2013).

    CAS  PubMed  Google Scholar 

  24. Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).

    CAS  PubMed  Google Scholar 

  25. Kitagawa, D., Nishi, H. & Kobatake, S. Photoinduced twisting of a photochromic diarylethene crystal. Angew. Chem. Int. Ed. 52, 9320–9322 (2013).

    CAS  Google Scholar 

  26. Milam, K., O'Malley, G., Kim, N., Golovaty, D. & Kyu, T. Swimming photochromic azobenzene single crystals in triacrylate solution. J. Phys. Chem. B 114, 7791–7796 (2010).

    CAS  PubMed  Google Scholar 

  27. Terao, F., Morimoto, M. & Irie, M. Light-driven molecular-crystal actuators: rapid and reversible bending of rodlike mixed crystals of diarylethene derivatives. Angew. Chem. Int. Ed. 51, 901–904 (2012).

    CAS  Google Scholar 

  28. Morimoto, M. & Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010).

    CAS  PubMed  Google Scholar 

  29. Ghosh, S. & Reddy C. M. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew. Chem. Int. Ed. 51, 10319–10323 (2012).

    CAS  Google Scholar 

  30. Nath, N. K. et al. Model for photoinduced bending of slender molecular crystals. J. Am. Chem. Soc. 136, 2757–2766 (2014).

    CAS  PubMed  Google Scholar 

  31. Reddy, C. M., Kirchner, M. T., Gundakaram, R. C. & Desiraju, G. R. Isostructurality, polymorphism and mechanical properties of some hexahalogenated benzenes: the nature of halogen···halogen interactions. Chem. Eur. J. 12, 2222–2234 (2006).

    CAS  PubMed  Google Scholar 

  32. Reddy, C. M. et al. Structural basis for bending of organic crystals. Chem. Commun. 3945–3947 (2005).

  33. Kim, T., Zhu, L., Mueller, L. J. & Bardeen, C. J. Mechanism of photoinduced bending and twisting in crystalline microneedles and microribbons composed of 9-methylanthracene. J. Am. Chem. Soc. 136, 6617–6625 (2014).

    CAS  PubMed  Google Scholar 

  34. Warner, M. & Mahadevan, L. Photoinduced deformations of beams, plates, and films. Phys. Rev. Lett. 92, 134302 (2004).

    CAS  PubMed  Google Scholar 

  35. Kiran, M. S. R. N., Varughese, S., Reddy, C. M., Ramamurty, U. & Desiraju, G. R. Mechanical anisotropy in crystalline saccharin: nanoindentation studies. Cryst. Growth Des. 10, 4650–4655 (2010).

    CAS  Google Scholar 

  36. Reddy, C. M., Padmanabhan, K. A. & Desiraju, G. R. Structure–property correlations in bending and brittle organic crystals. Cryst. Growth Des. 6, 2720–2731 (2006).

    CAS  Google Scholar 

  37. Varughese, S., Kiran, M. S. R. N., Ramamurty, U. & Desiraju, G. R. Nanoindentation in crystal engineering: quantifying mechanical properties of molecular crystals. Angew. Chem. Int. Ed. 52, 2701–2712 (2013).

    CAS  Google Scholar 

  38. Yasuda, N. et al. X-ray diffractometry for the structure determination of a submicrometer single powder grain. J. Synchrotron Rad. 16, 352–357 (2009).

    CAS  Google Scholar 

  39. Yasuda, N., Fukuyama, Y., Toriumi, K., Kimura, S. & Takata, M. Submicrometer single crystal diffractometry for highly accurate structure determination. AIP Conf. Proc. 1234, 147–150 (2010).

    CAS  Google Scholar 

  40. Fukuyama, Y., Yasuda, N., Kimura, S. & Takata, M. Anomalous lattice shrink of a single CeO2 submicrometer particle in an optical trap. J. Phys. Soc. Jpn 82, 114608 (2013).

    Google Scholar 

  41. Moriwaki, T. & Ikemoto, Y. BL43IR at SPring-8 redirected. Infrared Phys. Tech. 51, 400–403 (2008).

    Google Scholar 

  42. Zhao, Y., Matsuba, G., Moriwaki, T., Ikemoto, Y. & Ito, H. Shear-induced conformational fluctuations of polystyrene probed by 2D infrared microspectroscopy. Polymer 53, 4855–4860 (2012).

    CAS  Google Scholar 

  43. George, G. A. & Morris, G. C. Triplet exciton dynamics in hexachlorobenzene single crystals. Mol. Cryst. Liq. Cryst. 10, 115–135 (1970).

    CAS  Google Scholar 

  44. George, G. A. & Morris, G. C. Absorption fluorescence and phosphorescence spectra of hexachlorobenzene single crystals at 4.2 K. Mol. Cryst. Liq. Cryst. 10, 187–217 (1970).

    CAS  Google Scholar 

  45. Bates, J. B., Thomas, D. M., Bandy, A. & Lippincott, E. R. Polarized vibrational spectra of single crystal hexachlorobenzene. Spectrochim. Acta A 27, 637–648 (1971).

    CAS  Google Scholar 

  46. Shimida, R., Nibu, Y. & Shimada, H. Rotational lattice vibrations of hexachlorobenzene crystal. Res. Bull. Fukuoka Inst. Tech. 25, 187–192 (1993).

    Google Scholar 

  47. Jongenelis, A. P. J. M., van den Berg, T. H. M., Jansen, A. P. J., Schmidt, J. & van der Avoird, A. Vibron band structure in chlorinated benzene crystals: lattice dynamics calculations and Raman spectra of 1,2,4,5‐tetrachlorobenzene. J. Chem. Phys. 89, 4023–4034 (1988).

    CAS  Google Scholar 

  48. White, K. M. & Eckhardt, C. J. Single crystal Raman spectra of 1,2,4,5-tetrabromobenzene: calculational and experimental assignment of the internal modes. J. Chem. Phys. 109, 208–213 (1998).

    CAS  Google Scholar 

  49. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  50. Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology J. Mater. Res. 19, 3–20 (2004).

    CAS  Google Scholar 

  51. APEX DUO, version 2.1–4; SAINT, version 7.34A (Bruker AXS Inc., 2012).

  52. Sheldrick, G. M. SADABS (Univ. Göttingen, 1996).

    Google Scholar 

  53. Sheldrick, G. M. A Short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  Google Scholar 

  54. Sheldrick, G. M. SHELXL 2013 (Univ. Göttingen, 2013).

    Google Scholar 

Download references

Acknowledgements

This work was partly carried out with financial support from New York University Abu Dhabi. The micro-X-ray diffraction and micro-IR spectroscopic measurements were performed at BL40XU (X-ray) and BL43IR (IR), SPring-8, with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposals nos. 2013A1052 (X-ray) and 2014A1826 (IR)). The authors thank J. Weston (New York University Abu Dhabi) for his help with the nanoindentation and AFM experiments, A. Basu (IISER Kolkata) for assisting with the micro-Raman spectra and J. Whelan for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.K.P. performed the nanoindentation tests and other characterization, and analysed the data. S.G. and G.D.M. recorded and analysed the Raman spectra. N.Y. recorded and analysed the micro-X-ray diffraction data. T.M. recorded the infrared spectra. P.N. and C.M.R. conceived the study, partially analysed the data and co-wrote the paper. The manuscript was written with contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to C. Malla Reddy or Panče Naumov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 671 kb)

Supplementary movie 1

Supplementary movie 1 (AVI 1373 kb)

Supplementary movie 2

Supplementary movie 2 (AVI 5097 kb)

Supplementary movie 3

Supplementary movie 3 (AVI 7416 kb)

Supplementary movie 4

Supplementary movie 4 (AVI 4328 kb)

Supplementary information

Crystallographic data for HCB. (CIF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, M., Ghosh, S., Yasuda, N. et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nature Chem 7, 65–72 (2015). https://doi.org/10.1038/nchem.2123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing