Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A critical role for Cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster

Abstract

We have examined the process by which cell diversity is generated in neuroblast (NB) lineages in the central nervous system of Drosophila melanogaster. Thoracic NB6-4 (NB6-4t) generates both neurons and glial cells, whereas NB6-4a generates only glial cells in abdominal segments1. This is attributed to an asymmetric first division of NB6-4t, localizing prospero (pros) and glial cell missing (gcm) only to the glial precursor cell, and a symmetric division of NB6-4a, where both daughter cells express pros and gcm2,3,4,5. Here we show that the NB6-4t lineage represents the ground state, which does not require the input of any homeotic gene, whereas the NB6-4a lineage is specified by the homeotic genes abd-A and Abd-B. They specify the NB6-4a lineage by down-regulating levels of the G1 cyclin, DmCycE (CycE). CycE, which is asymmetrically expressed after the first division of NB6-4t, functions upstream of pros and gcm to specify the neuronal sublineage. Loss of CycE function causes homeotic transformation of NB6-4t to NB6-4a, whereas ectopic CycE induces reverse transformations. However, other components of the cell cycle seem to have a minor role in this process, suggesting a critical role for CycE in regulating cell fate in segment-specific neural lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NB6-4 lineages in thoracic and abdominal segments of wild-type embryos.
Figure 2: Segment-specificity of the NB6-4 lineage is determined by the homeotic genes abdA and AbdB.
Figure 3: NB6-4 lineages show homeotic transformations in the backgrounds of loss- and gain-of-CycE-function.
Figure 4: Loss- and gain-of-function phenotypes of dacapo, E2F, Rbf, cdc2 and CycA in NB6-4 lineages.
Figure 5: CycE is differentially expressed between NB6-4t and NB6-4a lineages.

Similar content being viewed by others

References

  1. Schmidt, H. et al. The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev. Biol. 189, 186–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Akiyama-Oda, Y., Hotta, Y., Tsukita, S. & Oda, H. Mechanism of glia–neuron cell-fate switch in the Drosophila thoracic neuroblast 6-4 lineage. Development 127, 3513–3522 (2000).

    CAS  PubMed  Google Scholar 

  3. Akiyama-Oda, Y., Hotta, Y., Tsukita, S. & Oda, H. Distinct mechanisms triggering glial differentiation in Drosophila thoracic and abdominal neuroblasts 6-4. Dev. Biol. 222, 429–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bernardoni, R., Kammerer, M., Vonesch, J. L. & Giangrande, A. Gliogenesis depends on glide/gcm through asymmetric division of neuroglioblasts. Dev. Biol. 216, 265–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Freeman, M. R. & Doe, C. Q. Asymmetric Prospero localization is required to generate mixed neuronal/glial lineages in the Drosophila CNS. Development 128, 4103–4112 (2001).

    CAS  PubMed  Google Scholar 

  6. Doe, C. Q. in Determinants of Neuronal Identity (eds Macagno, E. R. & Shankland, M.) 119–154 (Academic, New York, 1992).

    Book  Google Scholar 

  7. Bossing, T., Udolph, G., Doe, C. Q. & Technau, G. M. The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Bhat, K. M. Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays 21, 472–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Skeath, J. B. At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays 21, 922–931 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Carroll, S. B., Weatherbee, S. D. & Langeland, J. A. Homeotic genes and the regulation and evolution of insect wing number. Nature 375, 58–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Struhl, G. & Brower, D. Early role of the esc+ gene product in the determination of segments in Drosophila. Cell 31, 285–292 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Koff, A. et al. Formation and activation of a cyclin E–cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689–1694 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Richardson, H. E., O´ Keefe, L. V., Reed, S. I. & Saint, R. A Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 119, 673–690 (1993).

    CAS  PubMed  Google Scholar 

  15. Prokop, A. & Technau, G. M. in Cellular Interactions in Development (ed. Hartley, D. A.) 33–58 (IRL, Oxford, 1993).

    Google Scholar 

  16. de Nooij, J. C., Letendre, M. A. & Hariharan, I. K. A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87, 1237–1247 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Lane, M. E. et al. Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87, 1225–1235 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. de Nooij, J. C. & Hariharan, I. K. Uncoupling cell fate determination from patterned cell division in the Drosophila eye. Science 270, 983–985 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Harper, W. J., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    CAS  PubMed  Google Scholar 

  20. Duronio, R. J., O'Farrell, P. H., Xie, E. J., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Duronio, R. J. & O'Farrell, P. H. Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Dev. 9, 1456–1468 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Du, W. & Dyson, N. The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. EMBO J. 18, 916–925 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayashi, S. A Cdc2 dependent checkpoint maintains diploidy in Drosophila. Development 122, 1051–1058 (1996).

    CAS  PubMed  Google Scholar 

  24. Tio, M., Udolph, G., Yang, X. & Chia, W. cdc2 links the Drosophila cell cycle and asymmetric division machineries. Nature 409, 1063–1067 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Manak, J. R., Mathies, L. D. & Scott, M. P. Regulation of a decapentaplegic midgut enhancer by homeotic proteins. Development 120, 3605–3619 (1994).

    CAS  PubMed  Google Scholar 

  26. Ekker, S. C., Young, K. E., von Kessler, D. P. & Beachy, P. A. Optimal DNA sequence recognition by the Ultrabithorax homeodomain of Drosophila. EMBO J. 10, 1179–1186 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones, L., Richardson, H. & Saint, R. Tissue-specific regulation of cyclin E transcription during Drosophila melanogaster embryogenesis. Development 127, 4619–4630 (2000).

    CAS  PubMed  Google Scholar 

  28. Ohnuma, S., Philpott, A., Wang, K., Holt, C. E. & Harris, W. A. p27Xic1, a Cdk inhibitor, promotes the determination of glia cells in Xenopus retina. Cell 99, 499–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  30. Campos-Ortega, J. A. & Hartenstein, V. The embryonic development of Drosophila melanogaster. (Springer Verlag, Berlin, 1997).

    Book  Google Scholar 

Download references

Acknowledgements

We thank J. Urban, C. Lehner and A. Rogulja-Ortmann for comments; G. Vogler and O. Vef for advice on methods; and C. Lehner, I. Duncan, M. Freeman, C.Q. Doe, A. Michelson, E. Sanchez-Herrero, the Developmental Studies Hybridoma Bank (DSHB) and the Bloomington stock center for fly strains, antibodies and cDNA clones. We thank members of both of our laboratories for technical help and advice. This work was supported by the Deutsche Forschungs-gemeinschaft (grant to G.M.T.) and the Volkswagen-Stiftung (grant to L.S.S. and G.M.T.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Shashidhara or Gerhard M. Technau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Fig S1 (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, C., Pallavi, S., Prasad, M. et al. A critical role for Cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nat Cell Biol 7, 56–62 (2005). https://doi.org/10.1038/ncb1203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing