Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cilium assembly and disassembly

Abstract

The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage of the centrosome–cilium cycle to the cell cycle.
Figure 2: Key players and events in cilium assembly.
Figure 3: Cilium disassembly.

Similar content being viewed by others

References

  1. Kobayashi, T. & Dynlacht, B. D. Regulating the transition from centriole to basal body. J. Cell Biol. 193, 435–444 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nigg, E. A. & Stearns, T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Goto, H., Inoko, A. & Inagaki, M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell. Mol. Life Sci. 70, 3893–3905 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Einstein, E. B. et al. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J. Neurosci. 30, 4306–4314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membrane Biol. 184, 71–79 (2001).

    CAS  Google Scholar 

  9. Chavali, P. L., Putz, M. & Gergely, F. Small organelle, big responsibility: the role of centrosomes in development and disease. Phil. Trans. R. Soc. B 369, 20130468 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Lee, J. E. & Gleeson, J. G. A systems-biology approach to understanding the ciliopathy disorders. Genome Med. 3, 59 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Zaghloul, N. A. & Katsanis, N. Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J. Clin. Invest. 119, 428–437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma, N., Berbari, N. F. & Yoder, B. K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top. Dev. Biol. 85, 371–427 (2008).

    CAS  PubMed  Google Scholar 

  13. Hildebrandt, F. & Zhou, W. Nephronophthisis-associated ciliopathies. J. Am. Soc. Nephrol. 18, 1855–1871 (2007).

    CAS  PubMed  Google Scholar 

  14. Wheatley, D. N., Wang, A. M. & Strugnell, G. E. Expression of primary cilia in mammalian cells. Cell Biol. Int. 20, 73–81 (1996).

    CAS  PubMed  Google Scholar 

  15. Aughsteen, A. A. The ultrastructure of primary cilia in the endocrine and excretory duct cells of the pancreas of mice and rats. Eur. J. Morphol. 39, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  16. Marion, V. et al. Transient ciliogenesis involving Bardet–Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl Acad. Sci. USA 106, 1820–1825 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stinchcombe, J. C. et al. Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis. Curr. Biol. 25, 3239–44 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu, W., Asp, P., Canter, B. & Dynlacht, B. D. Primary cilia control hedgehog signaling during muscle differentiation and are deregulated in rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 111, 9151–9156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tucker, R. W., Scher, C. D. & Stiles, C. D. Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40. Cell 18, 1065–1072 (1979).

    CAS  PubMed  Google Scholar 

  20. Tucker, R. W., Pardee, A. B. & Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17, 527–535 (1979).

    CAS  PubMed  Google Scholar 

  21. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Westlake, C. J. et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc. Natl Acad. Sci. USA 108, 2759–2764 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt, K. N. et al. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199, 1083–1101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kobayashi, T., Kim, S., Lin, Y. C., Inoue, T. & Dynlacht, B. D. The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J. Cell Biol. 204, 215–229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, Q. et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17, 228–240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshimura, S., Egerer, J., Fuchs, E., Haas, A. K. & Barr, F. A. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol. 178, 363–369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    CAS  PubMed  Google Scholar 

  29. Lechtreck, K. F. IFT–cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765–778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lechtreck, K. F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Eguether, T. et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev. Cell 31, 279–290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tanos, B. E. et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27, 163–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339–350 (2002).

    CAS  PubMed  Google Scholar 

  34. Kohlmaier, G. et al. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19, 1012–1018 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt, T. I. et al. Control of centriole length by CPAP and CP110. Curr. Biol. 19, 1005–1011 (2009).

    CAS  PubMed  Google Scholar 

  36. Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B. & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825–831 (2009).

    CAS  PubMed  Google Scholar 

  37. Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    CAS  PubMed  Google Scholar 

  38. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    CAS  PubMed  Google Scholar 

  39. Goetz, S. C., Liem, K. F., Jr. & Anderson, K. V. The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151, 847–858 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cajanek, L. & Nigg, E. A. Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc. Natl Acad. Sci. USA 111, 2841–2850 (2014).

    Google Scholar 

  41. Houlden, H. et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat. Genet. 39, 1434–1436 (2007).

    CAS  PubMed  Google Scholar 

  42. Bauer, P. et al. Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. J. Neurol. Neurosurg. Psychiatry 81, 1229–1232 (2010).

    PubMed  Google Scholar 

  43. Oda, T., Chiba, S., Nagai, T. & Mizuno, K. Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes Cells 19, 927–940 (2014).

    CAS  PubMed  Google Scholar 

  44. Xu, Q. et al. Phosphatidylinositol phosphate kinase PIPKIgamma and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat. Commun. 7, 10777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Gonzalo, F. R. et al. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34, 400–409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chavez, M. et al. Modulation of ciliary phosphoinositide content regulates trafficking and Sonic Hedgehog signaling output. Dev. Cell 34, 338–350 (2015).

    CAS  PubMed  Google Scholar 

  48. Kuhns, S. et al. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J. Cell Biol. 200, 505–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    CAS  PubMed  Google Scholar 

  51. Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jacob, L. S. et al. Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Sci. Signal. 4, ra4 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Plotnikova, O. V. et al. Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol. Biol. Cell 23, 2658–2670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ran, J., Yang, Y., Li, D., Liu, M. & Zhou, J. Deacetylation of alpha-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci. Rep. 5, 12917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Plotnikova, O. V. et al. INPP5E interacts with AURKA, linking phosphoinositide signaling to primary cilium stability. J. Cell Sci. 128, 364–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kinzel, D. et al. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev. Cell 19, 66–77 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Inoko, A. et al. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J. Cell Biol. 197, 391–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, K., Diener, D. R. & Rosenbaum, J. L. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J. Cell Biol. 186, 601–613 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kasahara, K. et al. Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 5, 5081 (2014).

    CAS  PubMed  Google Scholar 

  60. Wang, W., Wu, T. & Kirschner, M. W. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. eLife 3, e03083 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Inaba, H. et al. Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein–Aurora A pathway. J. Cell Biol. 212, 409–423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kobayashi, T., Tsang, W. Y., Li, J., Lane, W. & Dynlacht, B. D. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145, 914–925 (2011).

    CAS  PubMed  Google Scholar 

  63. Miyamoto, T. et al. The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 10, 664–673 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, S., Lee, K., Choi, J. H., Ringstad, N. & Dynlacht, B. D. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat. Commun. 6, 8087 (2015).

    CAS  PubMed  Google Scholar 

  65. Mahjoub, M. R. et al. The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. J. Cell. Sci. 115, 1759–1768 (2002).

    CAS  PubMed  Google Scholar 

  66. Pan, J., Wang, Q. & Snell, W. J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev. Cell 6, 445–451 (2004).

    CAS  PubMed  Google Scholar 

  67. Quarmby, L. M. & Mahjoub, M. R. Caught Nek-ing: cilia and centrioles. J. Cell Sci. 118, 5161–5169 (2005).

    CAS  PubMed  Google Scholar 

  68. Bradley, B. A. & Quarmby, L. M. A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J. Cell Sci. 118, 3317–3326 (2005).

    CAS  PubMed  Google Scholar 

  69. Wloga, D. et al. Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol. Biol. Cell 17, 2799–2810 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Piao, T. et al. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc. Natl Acad. Sci. USA 106, 4713–4718 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hilton, L. K., Gunawardane, K., Kim, J. W., Schwarz, M. C. & Quarmby, L. M. The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Curr. Biol. 23, 2208–2214 (2013).

    CAS  PubMed  Google Scholar 

  72. Lohret, T. A., McNally, F. J. & Quarmby, L. M. A role for katanin-mediated axonemal severing during Chlamydomonas deflagellation. Mol. Biol. Cell 9, 1195–1207 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rasi, M. Q., Parker, J. D., Feldman, J. L., Marshall, W. F. & Quarmby, L. M. Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas. Mol. Biol. Cell 20, 379–388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Das, R. M. & Storey, K. G. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 343, 200–204 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 28, 1688–1701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bangs, F. K., Schrode, N., Hadjantonakis, A. K. & Anderson, K. V. Lineage specificity of primary cilia in the mouse embryo. Nat. Cell Biol. 17, 113–122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, S. et al. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat. Cell Biol. 13, 351–360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Maskey, D. et al. Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J. 34, 2424–2440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293 (2004).

    CAS  PubMed  Google Scholar 

  80. Li, A. et al. Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat. Cell Biol. 13, 402–411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Riparbelli, M. G., Callaini, G. & Megraw, T. L. Assembly and persistence of primary cilia in dividing Drosophila spermatocytes. Dev. Cell 23, 425–432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nielsen, B. S. et al. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J. Cell Sci. 128, 3543–3549 (2015).

    CAS  PubMed  Google Scholar 

  83. Amakye, D., Jagani, Z. & Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 19, 1410–1422 (2013).

    CAS  PubMed  Google Scholar 

  84. Wong, S. Y. et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. & Korc, M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422–430 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, J., Dabiri, S. & Seeley, E. S. Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PloS ONE 6, e27410 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Basten, S. G. et al. Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia 2, 2 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Hassounah, N. B. et al. Primary cilia are lost in preinvasive and invasive prostate cancer. PloS ONE 8, e68521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Menzl, I. et al. Loss of primary cilia occurs early in breast cancer development. Cilia 3, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Frett, B. et al. Therapeutic melting pot of never in mitosis gene a related kinase 2 (Nek2): a perspective on Nek2 as an oncology target and recent advancements in Nek2 small molecule inhibition. J. Med. Chem. 57, 5835–5844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, P. H., Zhang, L., Zhang, Y. J., Zhang, J. & Xu, W. F. HDAC6: physiological function and its selective inhibitors for cancer treatment. Drug Discov. Ther. 7, 233–242 (2013).

    CAS  PubMed  Google Scholar 

  93. Frew, I. J. et al. pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J. 27, 1747–1757 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Albers, J. et al. Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. EMBO Mol. Med. 5, 949–964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shnitsar, I. et al. PTEN regulates cilia through Dishevelled. Nat. Commun. 6, 8388 (2015).

    CAS  PubMed  Google Scholar 

  96. Habbig, S. et al. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J. Cell. Biol. 193, 633–642 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. DiBella, L. M., Park, A. & Sun, Z. Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Human Mol. Genet. 18, 595–606 (2009).

    CAS  Google Scholar 

  98. Li, Z., Li, W., Song, L. & Zhu, W. Cilia, adenomatous polyposis coli and associated diseases. Oncogene 31, 1475–1483 (2012).

    CAS  PubMed  Google Scholar 

  99. Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254–257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, T. T. et al. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci. Rep. 5, 14096 (2015).

    CAS  PubMed  Google Scholar 

  101. Gupta, G. D. et al. A dynamic protein interaction landscape of the human centrosome–cilium interface. Cell 163, 1484–1499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mick, D. U. et al. Proteomics of primary cilia by proximity labeling. Dev. Cell 35, 497–512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many colleagues whose work could not be cited owing to space constraints. We thank M. Failler, W. Fu, S. Kim, W. Tsang, L. Wang and other colleagues for critical comments and encouragement. Work in B.D.D.'s laboratory was supported by NIH (grant no. 1R01HD069647).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irma Sánchez or Brian David Dynlacht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, I., Dynlacht, B. Cilium assembly and disassembly. Nat Cell Biol 18, 711–717 (2016). https://doi.org/10.1038/ncb3370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing