Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody

Abstract

Several subunits of the class III phosphatidylinositol-3-OH kinase (PI(3)K-III) complex are known as tumour suppressors. Here we uncover a function for this complex and its catalytic product phosphatidylinositol-3-phosphate (PtdIns(3)P) in cytokinesis. We show that PtdIns(3)P localizes to the midbody during cytokinesis and recruits a centrosomal protein, FYVE-CENT (ZFYVE26), and its binding partner TTC19, which in turn interacts with CHMP4B, an endosomal sorting complex required for transport (ESCRT)-III subunit implicated in the abscission step of cytokinesis. Translocation of FYVE-CENT and TTC19 from the centrosome to the midbody requires another FYVE-CENT-interacting protein, the microtubule motor KIF13A. Depletion of the VPS34 or Beclin 1 subunits of PI(3)K-III causes cytokinesis arrest and an increased number of binucleate and multinucleate cells, in a similar manner to the depletion of FYVE-CENT, KIF13A or TTC19. These results provide a mechanism for the translocation and docking of a cytokinesis regulatory machinery at the midbody.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PtdIns(3)P localizes to the midbody and is required for cytokinesis.
Figure 2: siRNA screening for PtdIns(3)P-binding proteins regulating early cytokinesis.
Figure 3: FYVE-CENT localizes to the centrosome and midbody.
Figure 4: FYVE-CENT is required for cytokinesis.
Figure 5: A functional FYVE domain is important for the targeting of FYVE-CENT to the midbody.
Figure 6: FYVE-CENT binds directly to TTC19 and KIF13A.
Figure 7: The FYVE-CENT-interacting proteins KIF13A and TTC19 localize to the centrosome and midbody and control cytokinesis.
Figure 8: The interplay between FYVE-CENT, KIF13A and TTC19 controls cytokinesis.

Similar content being viewed by others

References

  1. Barr, F. A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell 131, 847–860 (2007).

    Article  CAS  Google Scholar 

  2. Montagnac, G., Echard, A. & Chavrier, P. Endocytic traffic in animal cell cytokinesis. Curr. Opin. Cell Biol. 20, 454–461 (2008).

    Article  CAS  Google Scholar 

  3. Montagnac, G. & Chavrier, P. Endosome positioning during cytokinesis. Biochem. Soc. Trans. 36, 442–443 (2008).

    Article  CAS  Google Scholar 

  4. Steigemann, P. & Gerlich, D. W. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol. 19, 606–616 (2009).

    Article  CAS  Google Scholar 

  5. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  Google Scholar 

  6. Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  Google Scholar 

  7. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  Google Scholar 

  8. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  Google Scholar 

  9. Fabbro, M. et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9, 477–488 (2005).

    Article  CAS  Google Scholar 

  10. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  Google Scholar 

  11. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  Google Scholar 

  12. Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).

    Article  CAS  Google Scholar 

  13. Stenmark, H. & Gillooly, D. J. Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin. Cell Dev. Biol. 12, 193–199 (2001).

    Article  CAS  Google Scholar 

  14. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  Google Scholar 

  15. Hayakawa, A. et al. Structural basis for endosomal targeting by FYVE domains. J. Biol. Chem. 279, 5958–5966 (2004).

    Article  CAS  Google Scholar 

  16. Lindmo, K. & Stenmark, H. Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci. 119, 605–614 (2006).

    Article  CAS  Google Scholar 

  17. Backer, J. M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008).

    Article  CAS  Google Scholar 

  18. Levine, B., Sinha, S. & Kroemer, G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4, 600–606 (2008).

    Article  CAS  Google Scholar 

  19. Prekeris, R. & Gould, G. W. Breaking up is hard to do — membrane traffic in cytokinesis. J. Cell Sci. 121, 1569–1576 (2008).

    Article  CAS  Google Scholar 

  20. Montagnac, G. et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 19, 184–195 (2009).

    Article  CAS  Google Scholar 

  21. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  Google Scholar 

  22. Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nature Rev. Mol. Cell Biol. 4, 842–854 (2003).

    Article  CAS  Google Scholar 

  23. Birkeland, H. C. & Stenmark, H. Protein targeting to endosomes and phagosomes via FYVE and PX domains. Curr. Top. Microbiol. Immunol. 282, 89–115 (2004).

    CAS  PubMed  Google Scholar 

  24. Hanein, S. et al. Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am. J. Hum. Genet. 82, 992–1002 (2008).

    Article  CAS  Google Scholar 

  25. Misra, S. & Hurley, J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666 (1999).

    Article  CAS  Google Scholar 

  26. Gaullier, J.-M., Rønning, E., Gillooly, D. J. & Stenmark, H. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J. Biol. Chem. 275, 24595–24600 (2000).

    Article  CAS  Google Scholar 

  27. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    Article  CAS  Google Scholar 

  28. Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21, 932–939 (1999).

    Article  CAS  Google Scholar 

  29. Tsang, H. T. et al. A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics 88, 333–346 (2006).

    Article  CAS  Google Scholar 

  30. Dukes, J. D., Richardson, J. D., Simmons, R. & Whitley, P. A dominant-negative ESCRT-III protein perturbs cytokinesis and trafficking to lysosomes. Biochem. J. 411, 233–239 (2008).

    Article  CAS  Google Scholar 

  31. Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    Article  CAS  Google Scholar 

  32. Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Struct. Mol. Biol. 15, 1278–1286 (2008).

    Article  CAS  Google Scholar 

  33. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    Article  CAS  Google Scholar 

  34. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  Google Scholar 

  35. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest 112, 1809–1820 (2003).

    Article  CAS  Google Scholar 

  36. Maiuri, M. C. et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 16, 87–93 (2009).

    Article  CAS  Google Scholar 

  37. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  38. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  Google Scholar 

  39. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

  40. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    CAS  PubMed  Google Scholar 

  41. Juhasz, G. et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655–666 (2008).

    Article  CAS  Google Scholar 

  42. Skanland, S. S., Walchli, S., Utskarpen, A., Wandinger-Ness, A. & Sandvig, K. Phosphoinositide-regulated retrograde transport of ricin: crosstalk between hVps34 and sorting nexins. Traffic 8, 297–309 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nobutaka Hirokawa for providing the expression construct for Myc–KIF13A, Aviva Tolkovsky for the gift of HeLa GFP–LC3 cells, Wes Sundquist for providing CHMP4A constructs, and Thomas P. Neufeld for the vps34 mutant flies. A.P.S. is a PhD student of the ENDOCYTE Research Training Network of the European Union. I.P.N. is a postdoctoral fellow of the Stem Cell Research Programme of the Research Council of Norway. N.M.P. is a postdoctoral fellow of the South-Eastern Norway Regional Health Authority. C.R. is a postdoctoral fellow, and T.E.R. and R.I.S. are senior research fellows, of the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

A.P.S. designed and performed cloning, transfection, confocal fluorescence microscopy, siRNA knock-down, rescue, immunoblotting, pull-down and liposome binding assay experiments and contributed to the writing of the manuscript. I.P.N. conceived and designed experiments, performed electron microscopy experiments, observed and analysed data from confocal fluorescence microscopy experiments and wrote the draft manuscript. N.M.P. performed transfection, co-immunoprecipitation and pull-down experiments, participated in siRNA screening and reviewed the manuscript. K.L. performed statistical analyses and edited the manuscript. J.P. and T.E.R. conceived and performed studies of Drosophila vps34 mutants and edited the manuscript. R.I.S. reviewed cancer data and edited the manuscript. C.R. performed siRNA screening and cytokinesis analyses and edited the manuscript. H.S. conceived and designed experiments, supervised the study and wrote the final version of the manuscript.

Corresponding author

Correspondence to Harald Stenmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagona, A., Nezis, I., Pedersen, N. et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 12, 362–371 (2010). https://doi.org/10.1038/ncb2036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing