Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Future threats to biodiversity and pathways to their prevention

Subjects

Abstract

Tens of thousands of species are threatened with extinction as a result of human activities. Here we explore how the extinction risks of terrestrial mammals and birds might change in the next 50 years. Future population growth and economic development are forecasted to impose unprecedented levels of extinction risk on many more species worldwide, especially the large mammals of tropical Africa, Asia and South America. Yet these threats are not inevitable. Proactive international efforts to increase crop yields, minimize land clearing and habitat fragmentation, and protect natural lands could increase food security in developing nations and preserve much of Earth's remaining biodiversity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anthropogenic threats to mammals and birds and the role of body mass.
Figure 2: Diversity of mammals and birds worldwide and the extent of the extinction threat.
Figure 3: The current extent of large mammals and projected land clearing worldwide.
Figure 4: Projected growth rates for the human population and current crop yields worldwide.
Figure 5: Current and projected regional extinction risks for mammals and birds.
Figure 6: Potential benefits to biodiversity of proactive conservation.

Similar content being viewed by others

References

  1. Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).

    CAS  PubMed  Google Scholar 

  2. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev. 2, 81–98 (2015).

    Google Scholar 

  3. Vitousek, P. M., Mooney, H. A, Lubchenco, J. & Melillo, J. M. Human domination of Earth's ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  4. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  PubMed  ADS  Google Scholar 

  5. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    CAS  PubMed  ADS  Google Scholar 

  6. IUCN. The IUCN Red List of Threatened Species. Version 2016-2. http://www.iucnredlist.org. (2016).

  7. McKee, J. K., Sciulli, P. W., Fooce, C. D. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biol. Conserv. 115, 161–164 (2004).

    Google Scholar 

  8. Visconti, P. et al. Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. B 366, 2693–2702 (2011).

    Google Scholar 

  9. Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Google Scholar 

  10. Balmford, A., Green, R. E. & Scharlemann, J. P. W. Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob. Change Biol. 11, 1594–1605 (2005).

    ADS  Google Scholar 

  11. Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004). This work shows that the interaction of human activity with climate change led to considerable increases in extinction rates during the Pleistocene epoch, especially for large mammals.

    CAS  PubMed  ADS  Google Scholar 

  12. Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  13. Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  PubMed  ADS  Google Scholar 

  14. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    CAS  PubMed  ADS  Google Scholar 

  15. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    PubMed  PubMed Central  ADS  Google Scholar 

  16. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014). A review of the state of the knowledge of biodiversity, species distributions and extinction rates, as well as how these are likely to change in the future.

    CAS  PubMed  Google Scholar 

  17. May, R. M., Lawton, J. H. & Stork, E. in Extinction Rates (eds Lawton, J. H. & May, R. M.) 1–24 (Oxford Univ. Press, 1995).

    Google Scholar 

  18. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241 (United Nations, 2015).

  19. Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).

    CAS  PubMed  ADS  Google Scholar 

  20. Mace, G. M. et al. Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    PubMed  Google Scholar 

  21. Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    CAS  PubMed  ADS  Google Scholar 

  22. Ripple, W. J. et al. Collapse of the world's largest herbivores. Sci. Adv. 1, e1400103 (2015).

    PubMed  PubMed Central  ADS  Google Scholar 

  23. Di Minin, E. et al. Identification of policies for a sustainable legal trade in rhinoceros horn based on population projection and socioeconomic models. Conserv. Biol. 29, 545–555 (2015).

    PubMed  Google Scholar 

  24. Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  25. Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world's mammals. R. Soc. Open Sci. 3, 160498 (2016).

    PubMed  PubMed Central  ADS  Google Scholar 

  26. Corlett, R. T. The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39, 292–303 (2007).

    Google Scholar 

  27. Lindsey, P. A. et al. The bushmeat trade in African savannas: impacts, drivers, and possible solutions. Biol. Conserv. 160, 80–96 (2013).

    Google Scholar 

  28. Maisels, F. et al. Devastating decline of forest elephants in central Africa. PLoS ONE 8, e59469 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Strauss, M. K. L., Kilewo, M., Rentsch, D. & Packer, C. Food supply and poaching limit giraffe abundance in the Serengeti. Popul. Ecol. 57, 505–516 (2015).

    Google Scholar 

  30. Brashares, J. S. et al. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    CAS  PubMed  ADS  Google Scholar 

  31. Packer, C. et al. Conserving large carnivores: dollars and fence. Ecol. Lett. 16, 635–641 (2013).

    CAS  PubMed  Google Scholar 

  32. Packer, C., Ikanda, D., Kissui, B. & Kushnir, H. Lion attacks on humans in Tanzania. Nature 436, 927–928 (2005).

    CAS  PubMed  ADS  Google Scholar 

  33. Kissui, B. M. Livestock predation by lions, leopards, spotted hyenas, and their vulnerability to retaliatory killing in the Maasai steppe, Tanzania. Anim. Conserv. 11, 422–432 (2008).

    Google Scholar 

  34. Hazzah, L. et al. Efficacy of two lion conservation programs in Maasailand, Kenya. Conserv. Biol. 28, 851–860 (2014).

    PubMed  Google Scholar 

  35. Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Kevin, J. Avian extinction and mammalian introductions on Oceanic islands. Science 305, 1955–1958 (2004).

    CAS  PubMed  ADS  Google Scholar 

  36. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    CAS  PubMed  ADS  Google Scholar 

  37. Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  38. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS  PubMed  ADS  Google Scholar 

  39. Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005). This paper demonstrates that both biological and environmental factors make large-bodied animals more predisposed to extinction.

    CAS  PubMed  ADS  Google Scholar 

  40. Grossman, G. & Krueger, A. Economic growth and the environment. Q. J. Econ. 110, 353–377 (1995).

    MATH  Google Scholar 

  41. Balmford, A. et al. Capturing the many dimensions of threat: comment on Salafsky et al. Conserv. Biol. 23, 482–487 (2009).

    PubMed  Google Scholar 

  42. The World Bank. World Development Indicators 2016 https://openknowledge.worldbank.org/handle/10986/23969 (2016).

  43. The Conference Board. Total Economy Database https://www.conference-board.org/data/economydatabase/ (2016).

  44. Rodrigues, A. S. L. Are global conservation efforts successful? Science 313, 1051–1052 (2006).

    PubMed  Google Scholar 

  45. Butchart, S. H. M., Stattersfield, A. J. & Brooks, T. M. Going or gone: defining 'possibly extinct' species to give a truer picture of recent extinctions. Bull. Br. Ornithol. Club 126, 7–24 (2006).

    Google Scholar 

  46. Hoffmann, M. et al. The impact of conservation on the status of the world's vertebrates. Science 330, 1503–1509 (2010).

    CAS  PubMed  ADS  Google Scholar 

  47. Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015). This paper highlights that meeting goals for protected-area coverage will be insufficient to protect biodiversity unless such areas are also well managed and properly located.

    Google Scholar 

  48. Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Google Scholar 

  49. Barnes, M. D., Craigie, I. D., Dudley, N. & Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. Ann. NY Acad. Sci. http://dx.doi.org/10.1111/nyas.13154 (2016).

  50. Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).

    CAS  PubMed  ADS  Google Scholar 

  52. Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl Acad. Sci. USA 113, 4033–4038 (2016).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  53. Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS  PubMed  ADS  Google Scholar 

  54. Ripple, W. J. et al. Status and ecological effects of the world's largest carnivores. Science 343, 1241484 (2014).

    PubMed  Google Scholar 

  55. Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    PubMed  Google Scholar 

  56. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  PubMed  ADS  Google Scholar 

  57. Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 100, 10309–10313 (2011).

    ADS  Google Scholar 

  58. Cardillo, M., Mace, G. M., Gittleman, J. L. & Purvis, A. Latent extinction risk and the future battlegrounds of mammal conservation. Proc. Natl Acad. Sci. USA 103, 4157–4161 (2006).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  59. Johansson, Å . et al. Looking to 2060: Long-term Global Growth Prospects. OECD Economic Policy Paper 3 (OECD, 2012).

    Google Scholar 

  60. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  61. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  PubMed  ADS  Google Scholar 

  62. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    CAS  ADS  PubMed  Google Scholar 

  63. Balmford, A. & Whitten, T. Who should pay for tropical conservation, and how could the costs be met? Oryx 37, 238–250 (2003).

    Google Scholar 

  64. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  PubMed  ADS  Google Scholar 

  65. Weinzettel, J., Steen-Olsen, K., Hertwich, E. G., Borucke, M. & Galli, A. Ecological footprint of nations: comparison of process analysis, and standard and hybrid multiregional input–output analysis. Ecol. Econ. 101, 115–126 (2014).

    Google Scholar 

  66. Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    CAS  PubMed  ADS  Google Scholar 

  67. Brooks, T., Mittermeier, R. & Da Fonseca, G. A. B. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    CAS  PubMed  ADS  Google Scholar 

  68. Ricketts, T. H. et al. Pinpointing and preventing imminent extinctions. Proc. Natl Acad. Sci. USA 102, 18497–18501 (2005).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  69. Balmford, A. Conservation conflicts across Africa. Science 291, 2616–2619 (2001).

    CAS  PubMed  ADS  Google Scholar 

  70. Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, 1–6 (2009).

    Google Scholar 

  71. Wilson, K. A., McBride, M. F., Bode, M. & Possingham, H. P. Prioritizing global conservation efforts. Nature 440, 337–340 (2006).

    CAS  PubMed  ADS  Google Scholar 

  72. Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002). This study shows that large fragments of habitat are crucial for preserving biodiversity and the function of ecosystems in the face of habitat loss.

    Google Scholar 

  73. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052 (2015). This paper demonstrates that forest fragments, especially small and isolated patches, experience declines in ecosystem function and lose diversity over time, providing empirical evidence for the extinction debt.

    PubMed  PubMed Central  ADS  Google Scholar 

  74. Cousins, S. A. O. Extinction debt in fragmented grasslands: paid or not? J. Veg. Sci. 20, 3–7 (2009).

    Google Scholar 

  75. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    CAS  PubMed  ADS  Google Scholar 

  76. Ferraz, G. et al. Rates of species loss from Amazonian forest fragments. Proc. Natl Acad. Sci. USA 100, 14069–14073 (2003).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  77. Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).

    Google Scholar 

  78. Msoffe, F. U. et al. Spatial correlates of land-use changes in the Maasai-Steppe of Tanzania: implications for conservation and environmental planning. Int. J. Biodivers. Conserv. 3, 280–290 (2011).

    Google Scholar 

  79. Craigie, I. D. et al. Large mammal population declines in Africa's protected areas. Biol. Conserv. 143, 2221–2228 (2010).

    Google Scholar 

  80. Butchart, S. H. M., Stattersfield, A. J. & Collar, N. J. How many bird extinctions have we prevented? Oryx 40, 266–278 (2006).

    Google Scholar 

  81. Gross, M. The plight of the pachyderms. Curr. Biol. 26, R865–R868 (2016).

    CAS  Google Scholar 

  82. Damania, R., Milner-Gulland, E. J. & Crookes, D. J. A bioeconomic analysis of bushmeat hunting. Proc. R. Soc. B 272, 259–266 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Price, S. A. & Gittleman, J. L. Hunting to extinction: biology and regional economy influence extinction risk and the impact of hunting in artiodactyls. Proc. R. Soc. B 274, 1845–1851 (2007).

    PubMed  PubMed Central  Google Scholar 

  84. Bodmer, R. E., Eisenberg, J. F. & Redford, K. H. Hunting and the likelihood of extinction of Amazonian mammals. Conserv. Biol. 11, 460–466 (1997).

    Google Scholar 

  85. Fabinyi, M. & Liu, N. The Chinese policy and governance context for global fisheries. Ocean Coast. Manage. 96, 198–202 (2014).

    Google Scholar 

  86. Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    CAS  PubMed  ADS  Google Scholar 

  87. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    CAS  PubMed  ADS  Google Scholar 

  88. Burrows, M. T., Schoeman, D. S. & Richardson, A. J. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS  PubMed  ADS  Google Scholar 

  89. Benning, T. & LaPointe, D. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modeling the fate of endemic birds using a geographic information system. Proc. Natl Acad. Sci. USA 99, 14246–14249 (2002).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  90. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS  PubMed  ADS  Google Scholar 

  91. Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).

    Google Scholar 

  92. Williams, R., Burgess, M. G., Ashe, E., Gaines, S. D. & Reeves, R. R. U.S. seafood import restriction presents opportunity and risk. Science 354, 1372–1374 (2016).

    CAS  PubMed  ADS  Google Scholar 

  93. de Vente, J., Reed, M. S., Stringer, L. C., Valente, S. & Newig, J. How does the context and design of participatory decision making processes affect their outcomes? Evidence from sustainable land management in global drylands. Ecol. Soc. 21, 24 (2016).

    Google Scholar 

  94. Margules, C. & Pressey, R. Systematic conservation planning. Nature 405, 243–253 (2000).

    CAS  PubMed  Google Scholar 

  95. Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).

    Google Scholar 

  96. Bateman, I. J. et al. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341, 45–50 (2013).

    CAS  PubMed  ADS  Google Scholar 

  97. Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  98. Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    CAS  PubMed  ADS  Google Scholar 

  99. Polasky, S. et al. Are investments to promote biodiversity conservation and ecosystem services aligned? Oxf. Rev. Econ. Policy 28, 139–163 (2012).

    Google Scholar 

  100. Phalan, B. et al. How can higher-yield farming help to spare nature? Science 351, 450–451 (2016).

    CAS  PubMed  ADS  Google Scholar 

  101. Jackson, R. M., Mishra, C., McCarthy, T. M. & Ale, S. B. in The Biology and Conservation of Wild Felids Ch. 19, 417–430 (Oxford Univ. Press, 2010).

    Google Scholar 

  102. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012). This study predicts that crop yields in many developing nations can be doubled or tripled by appropriate fertilization and irrigation, potentially reducing the need for land clearing.

    CAS  PubMed  ADS  Google Scholar 

  103. Global Yield Gap and Water Productivity Atlas. Global Yield Gap Atlas http://www.yieldgap.org/ (accessed in September 2016).

  104. Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Sec. 3, 92–98 (2014).

    Google Scholar 

  105. Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20 (2014).

    Google Scholar 

  106. Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    CAS  PubMed  Google Scholar 

  107. Godfray, H. C. & Garnett, T. Food security and sustainable intensification. Phil. Trans. R. Soc. B 369, 20120273 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Robertson, G. P. et al. Farming for ecosystem services: an ecological approach to production agriculture. Bioscience 64, 404–415 (2014).

    Google Scholar 

  109. Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009). This work shows that high crop yields can be retained, even when the rate of nitrogen fertilization is reduced, by matching application rates to the current needs of crops.

    CAS  PubMed  ADS  Google Scholar 

  110. Dorward, A. & Chirwa, E. The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. Int. J. Agric. Sustain. 9, 232–247 (2011).

    Google Scholar 

  111. Druilhe, Z. & Barreiro-Hurlé, J. Fertilizer subsidies in sub-Saharan Africa. ESA Working Paper No. 12–04 (FAO, 2012).

  112. Khan, Z. R. et al. Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos. Trans. R. Soc. B. 369, 20120284 (2014).

    Google Scholar 

  113. Hall, N. M. et al. Effect of improved fallow on crop productivity, soil fertility and climate-forcing gas emissions in semi-arid conditions. Biol. Fertil. Soils 42, 224–230 (2006).

    Google Scholar 

  114. Garrity, D. P. et al. Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur. 2, 197–214 (2010).

    Google Scholar 

  115. Popkin, B. M. The nutrition transition in low-income countries: an emerging crisis. Nutr. Rev. 52, 285–298 (1994).

    CAS  PubMed  Google Scholar 

  116. Key, T. J., Thorogood, M., Appleby, P. N. & Burr, M. L. Dietary habits and mortality in 11,000 vegetarians and health conscious people: results of a 17 year follow up. Br. Med. J. 313, 775–779 (1996).

    CAS  Google Scholar 

  117. Mann, J. I., Appleby, P. N., Key, T. J. & Thorogood, M. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart 78, 450–455 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lagiou, P. et al. Mediterranean dietary pattern and mortality among young women: a cohort study in Sweden. Br. J. Nutr. 96, 384–392 (2006).

    CAS  PubMed  Google Scholar 

  119. Brunner, E. J. et al. Dietary patterns and 15-y risks of major coronary events, diabetes, and mortality. Am. J. Clin. Nutr. 87, 1414–1421 (2008).

    CAS  PubMed  Google Scholar 

  120. Martínez-González, M. A. et al. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. Br. Med. J. 336, 1348–1351 (2008).

    Google Scholar 

  121. Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  122. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  123. Johnson, J. A., Runge, C. F., Senauer, B. & Polasky, S. Global food demand and carbon-preserving cropland expansion under varying levels of intensification. Land Econ. 92, 579–592 (2016).

    Google Scholar 

  124. Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nature Commun. 7, 11382 (2016).

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Hartline for assistance with assembling data, J. Cowles and F. Isbell for their comments, and the Long Term Ecological Research programme of the US National Science Foundation, the International Balzan Prize Foundation, the McKnight Presidential Chair, the University of Minnesota and the University of California, Santa Barbara for support. All data used in our analyses are publicly available from the original sources that we list or are in Supplementary Tables 3 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tilman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Contributions D.T., D.R.W. and M.C. conceived the project and M.C. and D.R.W. assembled data; D.T., M.C. and D.R.W. analysed the data; D.T., D.R.W., C.P., M.C., S.P. and K.K. wrote the paper.

Reviewer Information Nature thanks C. Godfray, L. Joppa and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com.reprints.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilman, D., Clark, M., Williams, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017). https://doi.org/10.1038/nature22900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22900

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing