Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact

Abstract

According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth’s mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some1,2,3 argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others4,5,6 claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario7,8 and the Grand Tack scenario9,10 of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth’s mantle constrains the mass of chondritic material added to Earth during Late Accretion11,12. Using HSE abundance measurements13,14, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth’s mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth’s mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The late-accreted mass relative to each synthetic Earth-like planet’s final mass as a function of the time of the last giant impact.
Figure 2: The likelihood that a planet suffering a last giant impact within a specific range of times has a late-accreted mass less than or equal to the chondritic mass of 4.8 ± 1.6 × 10−3.

Similar content being viewed by others

References

  1. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Jacobsen, S. B. The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33, 531–570 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Taylor, D. J., McKeegan, K. D. & Harrison, T. M. Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279, 157–164 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Touboul, M., Kleine, T., Bourdon, B., Palme, H. & Wieler, R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Allègre, C. J., Manhès, G. & Göpel, C. The major differentiation of the Earth at 4.45 Ga. Earth Planet. Sci. Lett. 267, 386–398 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Halliday, A. N. A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. R. Soc. A 366, 4163–4181 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. O'Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Raymond, S. N., O'Brien, D. P., Morbidelli, A. & Kaib, N. A. Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    Article  ADS  Google Scholar 

  9. Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. O'Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus (submitted)

  11. Chyba, C. F. Terrestrial mantle siderophiles and the lunar impact record. Icarus 92, 217–233 (1991)

    Article  ADS  Google Scholar 

  12. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorný, D. & Elkins-Tanton, L. Stochastic Late Accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Becker, H. et al. Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chemie Erde Geochem. 69, 101–125 (2009)

    Article  ADS  CAS  Google Scholar 

  15. König, S. et al. The Earth's tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011)

    Article  ADS  CAS  Google Scholar 

  16. Wetherill, G. W. Why isn't Mars as big as Earth? Abstr. Lunar Planet. Sci. Conf. 22, 1495 (1991)

    ADS  Google Scholar 

  17. Chambers, J. E. & Cassen, P. M. The effects of nebula surface density profile and giant-planet eccentricities on planetary accretion in the inner solar system. Meteorit. Planet. Sci. 37, 1523–1540 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophile element concentrations in the Earth's mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012)

    Article  ADS  CAS  Google Scholar 

  20. Chou, C. L. Fractionation of siderophile elements in the Earth's upper mantle. Abstr. Lunar Planet. Sci. Conf. 9, 219–230 (1978)

    ADS  Google Scholar 

  21. Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Albarede, F. et al. Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222, 44–52 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Rudge, J. F., Kleine, T. & Bourdon, B. Broad bounds on Earth's accretion and core formation constrained by geochemical models. Nature Geosci. 3, 439–443 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Wiechert, U. et al. Oxygen isotopes and the Moon-forming giant impact. Science 294, 345–348 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nature Geosci. 5, 251–255 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Leinhardt, Z. M. & Stewart, S. T. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745, 79 (2012)

    Article  ADS  Google Scholar 

  27. Kokubo, E. & Genda, H. Formation of terrestrial planets from protoplanets under a realistic accretion condition. Astrophys. J. 714, L21–L25 (2010)

    Article  ADS  Google Scholar 

  28. Chambers, J. E. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224, 43–56 (2013)

    Article  ADS  Google Scholar 

  29. Asphaug, E., Agnor, C. B. & Williams, Q. Hit-and-run planetary collisions. Nature 439, 155–160 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. & Kring, D. A. The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Reufer, A., Meier, M. M. M., Benz, W. & Wieler, R. A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012)

    Article  ADS  Google Scholar 

  33. Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998)

    Article  ADS  Google Scholar 

  34. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)

    Article  ADS  Google Scholar 

  35. Morbidelli, A., Lunine, J. I., O'Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012)

    Article  ADS  CAS  Google Scholar 

  36. Haisch, K. E. J., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Article  ADS  CAS  Google Scholar 

  37. Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001)

    Article  ADS  Google Scholar 

  38. Raymond, S. N., Quinn, T. R. & Lunine, J. I. High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006)

    Article  ADS  Google Scholar 

  39. Morishima, R., Stadel, J. & Moore, B. From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus 207, 517–535 (2010)

    Article  ADS  CAS  Google Scholar 

  40. Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. S. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011)

    Article  ADS  Google Scholar 

  41. Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. S. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    Article  ADS  Google Scholar 

  42. Kokubo, E. & Ida, S. Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998)

    Article  ADS  Google Scholar 

  43. Canup, R. M. Lunar-forming collisions with pre-impact rotation. Icarus 196, 518–538 (2008)

    Article  ADS  Google Scholar 

  44. Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olson, P. & Weeraratne, D. Experiments on metal-silicate plumes and core formation. Phil. Trans. R. Soc. A 366, 4253–4271 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Dauphas, N. & Marty, B. Inference on the nature and the mass of Earth's late veneer from noble metals and gases. J. Geophys. Res. Planets 107, 5129 (2002)

    Article  ADS  CAS  Google Scholar 

  47. Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth's deep mantle. Nature 460, 620–623 (2009)

    Article  ADS  CAS  Google Scholar 

  48. Rubie, D. C., Gessmann, C. K. & Frost, D. J. Partitioning of oxygen during core formation on the Earth and Mars. Nature 429, 58–61 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 280, 365–383 (2011)

    Article  ADS  CAS  Google Scholar 

  50. Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517–520 (1996)

    Article  ADS  CAS  Google Scholar 

  51. Walker, R. J., Horan, M. F., Shearer, C. K. & Papike, J. J. Low abundances of highly siderophile elements in the lunar mantle: evidence for prolonged late accretion. Earth Planet. Sci. Lett. 224, 399–413 (2004)

    Article  ADS  CAS  Google Scholar 

  52. Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Frost, D. J. & McCammon, C. A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    Article  ADS  CAS  Google Scholar 

  54. Sharp, Z. D., McCubbin, F. M. & Shearer, C. K. A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013)

    Article  ADS  CAS  Google Scholar 

  55. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315, 217 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Day, J. M. D. & Walker, R. J. The highly siderophile element composition of the lunar mantle. Abstr. Lunar Planet. Sci. Conf. 42, 1288 (2011)

    ADS  Google Scholar 

  58. Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013)

    Article  ADS  Google Scholar 

  59. Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477, 195–198 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003)

    Article  ADS  CAS  Google Scholar 

  62. Deguen, R., Olson, P. & Cardin, P. Experiments on turbulent metal-silicate mixing in a magma ocean. Earth Planet. Sci. Lett. 310, 303–313 (2011)

    Article  ADS  CAS  Google Scholar 

  63. Dahl, T. W. & Stevenson, D. J. Turbulent mixing of metal and silicate during planet accretion—and interpretation of the Hf-W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010)

    Article  ADS  CAS  Google Scholar 

  64. Samuel, H. A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans. Earth Planet. Sci. Lett. 313, 105–114 (2012)

    Article  ADS  CAS  Google Scholar 

  65. Rubie, D. C. et al. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011)

    Article  ADS  CAS  Google Scholar 

  66. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    Article  ADS  CAS  Google Scholar 

  67. Spicuzza, M. J., Day, J. M. D., Taylor, L. A. & Valley, J. W. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254–265 (2007)

    Article  ADS  CAS  Google Scholar 

  68. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999)

    Article  ADS  CAS  Google Scholar 

  69. Dauphas, N., Davis, A. M., Marty, B. & Reisberg, L. The cosmic molybdenum-ruthenium isotope correlation. Earth Planet. Sci. Lett. 226, 465–475 (2004)

    Article  ADS  CAS  Google Scholar 

  70. Fitoussi, C. & Bourdon, B. Silicon isotope evidence against an enstatite chondrite Earth. Science 335, 1477 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Lugmair, G. W. & Shukolyukov, A. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998)

    Article  ADS  CAS  Google Scholar 

  72. Trinquier, A., Birck, J. L., Allègre, C. J., Göpel, C. & Ulfbeck, D. 53Mn–53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008)

    Article  ADS  CAS  Google Scholar 

  73. Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U. & Halliday, A. N. Titanium isotopes and the radial heterogeneity of the solar system. Earth Planet. Sci. Lett. 266, 233–244 (2008)

    Article  ADS  CAS  Google Scholar 

  74. Armytage, R. M. G., Georg, R. B., Williams, H. M. & Halliday, A. N. Silicon isotopes in lunar rocks: implications for the Moon's formation and the early history of the Earth. Geochim. Cosmochim. Acta 77, 504–514 (2012)

    Article  ADS  CAS  Google Scholar 

  75. Kleine, T. et al. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Article  ADS  CAS  Google Scholar 

  76. Laskar, J. Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75–L78 (1997)

    ADS  Google Scholar 

  77. Brasser, R., Walsh, K. J. & Nesvorný, D. Constraining the primordial orbits of the terrestrial planets. Mon. Not. R. Astron. Soc. 433, 3417–3427 (2013)

    Article  ADS  Google Scholar 

  78. Petitat, M., Kleine, T., Touboul, M., Bourdon, B. & Wieler, R. Hf-W chronometry of aubrites and the evolution of planetary bodies. Abstr. Lunar Planet. Sci. Conf. 39, 2164 (2008)

    ADS  Google Scholar 

  79. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Herwartz, D. Differences in the Δ17O between Earth, Moon and enstatite chondrites. Royal Society/Kavli Institute Meeting on “The Origin of the Moon—Challenges and Prospects” (25–26 September, Chicheley Hall, Buckinghamshire, UK, 2013)

Download references

Acknowledgements

S.A.J., A.M., D.P.O’B. and D.C.R were supported by the European Research Council Advanced Grant ‘ACCRETE’ (contract number 290568). D.P.O’B. was also supported by grant NNX09AE36G from NASA’s Planetary Geology and Geophysics research programme. S.N.R. acknowledges support from the NASA Astrobiology Institute’s Virtual Planetary Laboratory lead team, supported by NASA under cooperative agreement NNH05ZDA001C.

Author information

Authors and Affiliations

Authors

Contributions

A.M., K.J.W., S.N.R. and D.P.O’B. initiated a study of numerically simulating terrestrial planet formation. A.M., S.A.J., S.N.R., D.P.O’B. and K.J.W. ran N-body simulations and provided reduced data. S.A.J. analysed results. S.A.J., A.M. and D.C.R. discussed the meaning of the discovered relationship. S.A.J. wrote the paper with guidance from A.M. All authors commented on the manuscript.

Corresponding author

Correspondence to Seth A. Jacobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Four panels comparing the classical (triangles) and Grand Tack (circles) scenarios.

a, The mass of each planet in every simulated Solar System as a function of the semi-major axis. Planets within the grey zone are considered to be Earth-like. Planets at the distance of Mars from the Sun are too massive in classical simulations but are correct in Grand Tack simulations. b, c and d show the relative Late Accretion mass as a function of different parameters and the chondritic mass and its uncertainty MC = 4.8 ± 1.6 × 10−3 as a dashed line and grey region. b is the same as Fig. 1 of the main text, but with a broader timescale. c and d show the relative Late Accretion mass and two orbital structure statistics: concentration37 Sc and angular momentum deficit37,76 Sd. The Solar System has Sc = 89.9 and is marked with a vertical dashed line in c. Grand Tack simulations are as, or more, concentrated than classical simulations. The Solar System has Sd = 0.0018 and this is marked by a vertical dashed line in d. A late giant planet instability (about 500 Myr after the condensation of the first solids in the Solar System) probably excites the inner Solar System; given that these simulations end before the instability, they should possess an angular momentum deficit that is only a fraction of the current value77. Grand Tack simulations are either as dynamically excited or colder than classical simulations, although they are in some cases hotter than the current terrestrial planets.

Extended Data Figure 2 Figure 1 of the main text is reproduced in each panel for each scenario within the classical category.

For reference, the horizontal dashed line and enclosing darkened region are the best estimate and the 1σ uncertainty of the Late Veneer mass MC = 4.8 ± 1.6 × 10−3. Each panel shows the Earth-like planet’s relative late-accreted mass as a function of last giant impact time for different initial ratios of the total mass in embryos to planetesimals, as follows. 1:1 in a, 2:1 in b, 4:1 in c, and 8:1 in d. The mean time of the last giant impact increases and the relative Late Accretion mass decreases as the initial ratio of total embryo mass to planetesimal mass increases.

Extended Data Figure 3 The late-accreted mass MLA shown as greyscale contours of the two parameters X and Y.

The blue dashed contours indicate the location of a few specific late-accreted masses and are labelled in the framed boxes. For this figure, we assumed that Earth receives 52 times as much mass in small projectiles than the Moon (σ = 52). The red region is inaccessible, given that the measured chondritic mass in the lunar mantle requires a minimum flux of small planetesimals onto Earth's mantle.

Extended Data Figure 4 Each panel is like Extended Data Fig. 3 but showing additional constraints.

The constraint X ≥ 0.53, deduced by a reanalysis of Rudge et al.23 with the Hf/W ratio updated from Konig et al.15, is shown in light red in each panel. In bd, the solid green contours indicate the set of X, Y parameters that reproduce the nominal difference in W-isotope composition between the Moon and Earth (0.09 in units; see Touboul et al.4). The difference among these panels is in the assumed Hf/W and W-isotope composition for the mantle of the differentiated projectiles: b assumes values typical of eucrites; c is for aubrites and d is for Mars. The green dashed contours are the 1σ uncertainties on X, Y related to the uncertainty on the difference between the W-isotope composition between the Moon and Earth: ±0.1 in units. The areas exterior to these 1 − σ uncertainties have been coloured red.

Extended Data Table 1 Chondritic concentrations for different HSEs in Earth's mantle 13 and chondritic meteorites14 and the ratio of the two
Extended Data Table 2 Tungsten abundances and ratios for the mantle materials: basaltic eucrites75, aubrites78, and Mars75

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, S., Morbidelli, A., Raymond, S. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014). https://doi.org/10.1038/nature13172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing