Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A substantial population of low-mass stars in luminous elliptical galaxies

Abstract

The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way1 but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we report observations of the Na i doublet2,3 and the Wing–Ford molecular FeH band4,5 in the spectra of elliptical galaxies. These lines are strong in stars with masses less than 0.3M (where M is the mass of the Sun) and are weak or absent in all other types of stars5,6,7. We unambiguously detect both signatures, consistent with previous studies8 that were based on data of lower signal-to-noise ratio. The direct detection of the light of low-mass stars implies that they are very abundant in elliptical galaxies, making up over 80% of the total number of stars and contributing more than 60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low-mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form9 in the mass range 0.1M to 1M.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of the Na  i doublet and the Wing–Ford band.
Figure 2: Constraining the IMF.

References

  1. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    Article  ADS  Google Scholar 

  2. Faber, S. M. & French, H. B. Possible M dwarf enrichment in the semistellar nucleus of M31. Astrophys. J. 235, 405–412 (1980)

    Article  ADS  CAS  Google Scholar 

  3. Schiavon, R. P., Barbuy, B., Rossi, S. C. F. & Milone, A. The near-infrared Na i doublet feature in M stars. Astrophys. J. 479, 902–908 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Wing, R. F. & Ford, W. K. The infrared spectrum of the cool dwarf Wolf 359. Publ. Astron. Soc. Pacif. 81, 527–529 (1969)

    Article  ADS  CAS  Google Scholar 

  5. Schiavon, R. P., Barbuy, B. & Singh, P. D. The FeH Wing-Ford band in spectra of M stars. Astrophys. J. 484, 499–510 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Schiavon, R. P., Barbuy, B. & Bruzual, A. G. Near-infrared spectral features in single-aged stellar populations. Astrophys. J. 532, 453–460 (2000)

    Article  ADS  Google Scholar 

  7. Cushing, M. C., Rayner, J. T., Davis, S. P. & Vacca, W. D. FeH absorption in the near-infrared spectra of late M and L dwarfs. Astrophys. J. 582, 1066–1072 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Couture, J. & Hardy, E. The low-mass stellar content of galaxies—constraints through hybrid population synthesis near 1 micron. Astrophys. J. 406, 142–157 (1993)

    Article  ADS  Google Scholar 

  9. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    Article  ADS  Google Scholar 

  10. Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995)

    Article  ADS  Google Scholar 

  11. Baugh, C. M. et al. Can the faint submillimetre galaxies be explained in the Λ cold dark matter model? Mon. Not. R. Astron. Soc. 356, 1191–1200 (2005)

    Article  ADS  Google Scholar 

  12. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009)

    Article  ADS  Google Scholar 

  13. Rayner, J. T., Cushing, M. C. & Vacca, W. D. The Infrared Telescope Facility (IRTF) spectral library: cool stars. Astrophys. J. Suppl. 185 289–432 (2009)

    Article  ADS  CAS  Google Scholar 

  14. van Dokkum, P. G. Evidence of cosmic evolution of the stellar initial mass function. Astrophys. J. 674, 29–50 (2008)

    Article  ADS  Google Scholar 

  15. Fardal, M. A., Katz, N., Weinberg, D. H. & Davé, R. On the evolutionary history of stars and their fossil mass and light. Mon. Not. R. Astron. Soc. 379, 985–1002 (2007)

    Article  ADS  Google Scholar 

  16. Davé, R. The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? Mon. Not. R. Astron. Soc. 385, 147–160 (2008)

    Article  ADS  Google Scholar 

  17. Naab, T., Johansson, P. H., Ostriker, J. P. & Efstathiou, G. Formation of early-type galaxies from cosmological initial conditions. Astrophys. J. 658, 710–720 (2007)

    Article  ADS  CAS  Google Scholar 

  18. van Dokkum, P. G. et al. The growth of massive galaxies since z = 2. Astrophys. J. 709, 1018–1041 (2010)

    Article  ADS  Google Scholar 

  19. Boroson, T. A. & Thompson, I. B. Color distributions in early type galaxies. III – Radial gradients in spectral features. Astron. J. 101, 111–126 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Cenarro, A. J., Gorgas, J., Vazdekis, A., Cardiel, N. & Peletier, R. F. Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations? Mon. Not. R. Astron. Soc. 339, L12–L16 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Carter, D. Visvanathan, N. & Pickles, A. J. The dwarf star content of elliptical and lenticular galaxies. Astrophys. J. 311, 637–650 (1986)

  22. Treu, T. et al. The initial mass function of early-type galaxies. Astrophys. J. 709, 1195–1202 (2010)

    Article  ADS  Google Scholar 

  23. Calchi Novati, S. & de Luca, F. Jetzer, Ph. Mancini, L. & Scarpetta, G. Microlensing constraints on the Galactic bulge initial mass function. Astron. Astrophys. 480, 723–733 (2008)

    Article  ADS  Google Scholar 

  24. van der Wel, A. et al. Recent structural evolution of early-type galaxies: size growth from z = 1 to z = 0. Astrophys. J. 688, 48–58 (2008).

  25. Larson, R. B. Thermal physics, cloud geometry and the stellar initial mass function. Mon. Not. R. Astron. Soc. 359, 211–222 (2005)

    Article  ADS  Google Scholar 

  26. Bate, M. R. & Bonnell, I. A. The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds. Mon. Not. R. Astron. Soc. 356, 1201–1221 (2005)

    Article  ADS  Google Scholar 

  27. Bonnell, I. A., Clark, P. & Bate, M. R. Gravitational fragmentation and the formation of brown dwarfs in stellar clusters. Mon. Not. R. Astron. Soc. 389, 1556–1562 (2008)

    Article  ADS  Google Scholar 

  28. Schneider, R. & Omukai, K. Metals, dust and the cosmic microwave background: fragmentation of high-redshift star-forming clouds. Mon. Not. R. Astron. Soc. 402, 429–435 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Banerji, S., Viti, S., Williams, D. A. & Rawlings, J. M. C. Timescales for low-mass star formation in extragalactic environments: implications for the stellar initial mass function. Astrophys. J. 692, 283–289 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Labbé, I. et al. Star formation rates and stellar masses of z = 7–8 galaxies from IRAC observations of the WFC3/IR Early Release Science and the HUDF fields. Astrophys. J. 716, L103–L108 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Bezanson, J. Brinchmann, R. Larson and R. Zinn for discussions. We thank R. Schiavon for comments that improved the manuscript. This study is based on observations obtained at the W. M. Keck Observatory. We recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community and consider ourselves fortunate to have the opportunity to conduct observations from this mountain.

Author information

Authors and Affiliations

Authors

Contributions

P.G.v.D. obtained and analysed the data and contributed to the analysis and interpretation. C.C. constructed the stellar population synthesis models and contributed to the analysis and interpretation.

Corresponding author

Correspondence to Pieter G. van Dokkum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text on stellar population synthesis modelling, additional references and Supplementary Figures 1-2 with legends. (PDF 203 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dokkum, P., Conroy, C. A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010). https://doi.org/10.1038/nature09578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09578

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing