Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stellar mergers as the origin of the blue main-sequence band in young star clusters

Abstract

Recent high-quality Hubble Space Telescope photometry shows that the main-sequence stars of young star clusters form two discrete components in the colour–magnitude diagram. On the basis of their distribution in the colour–magnitude diagram, we show that stars of the blue main-sequence component can be understood as slow rotators originating from stellar mergers. We derive the masses of the blue main-sequence stars, and find that they follow a nearly flat mass function, which supports their unusual formation path. Our results imply that the cluster stars gain their mass in two different ways: by disk accretion leading to rapid rotation, contributing to the red main sequence, or by binary merger leading to slow rotation, populating the blue main sequence. We also derive the approximate merger time of the individual stars of the blue main-sequence component, and find a strong early peak in the merger rate, with a lower-level merger activity prevailing for tens of millions of years. This supports recent binary-formation models, and explains new velocity dispersion measurements for members of young star clusters. Our findings shed new light on the origin of the bimodal mass, spin and magnetic-field distributions of main-sequence stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CMD of NGC 1755 and the isochrone fits.
Fig. 2: Mass function of the red and the blue MS stars in NGC 1755.
Fig. 3: Binary evolution models at 30 Myr in the CMD.
Fig. 4: Stellar merger history in NGC 1755.

Similar content being viewed by others

Data availability

The observational data in this work can be found at https://doi.org/10.5281/zenodo.5770868. The MESA inlist files used to compute the single- and binary-star models in this work can be downloaded at: https://doi.org/10.5281/zenodo.5233209.

References

  1. Iben, J. I. Stellar evolution within and off the main sequence. Annu. Rev. Astron. Astrophys. 5, 571–626 (1967).

    Article  ADS  Google Scholar 

  2. Gaia Collaboration et al. Gaia Data Release 2. Observational Hertzsprung–Russell diagrams. Astron. Astrophys. 616, A10 (2018).

  3. Gratton, R. G., Carretta, E. & Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron. Astrophys. Rev. 20, 50 (2012).

    Article  ADS  Google Scholar 

  4. Milone, A. P. et al. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters—IX. The atlas of multiple stellar populations. Mon. Not. R. Astron. Soc. 464, 3636–3656 (2017).

    Article  ADS  Google Scholar 

  5. Milone, A. P., Bedin, L. R., Piotto, G. & Anderson, J. Multiple stellar populations in Magellanic Cloud clusters. I. An ordinary feature for intermediate age globulars in the LMC? Astron. Astrophys. 497, 755–771 (2009).

    Article  ADS  Google Scholar 

  6. Milone, A. P. et al. Multiple stellar populations in Magellanic Cloud clusters—IV. The double main sequence of the young cluster NGC 1755. Mon. Not. R. Astron. Soc. 458, 4368–4382 (2016).

    Article  ADS  Google Scholar 

  7. Li, C., de Grijs, R., Deng, L. & Milone, A. P. Discovery of extended main-sequence turnoffs in four young massive clusters in the Magellanic Clouds. Astrophys. J. 844, 119 (2017).

    Article  ADS  Google Scholar 

  8. Milone, A. P. et al. Multiple stellar populations in Magellanic Cloud clusters—VI. A survey of multiple sequences and Be stars in young clusters. Mon. Not. R. Astron. Soc. 477, 2640–2663 (2018).

    Article  ADS  Google Scholar 

  9. Li, C. et al. Extended main-sequence turnoffs in the double cluster h and χ Persei: the complex role of stellar rotation. Astrophys. J. 876, 65 (2019).

    Article  ADS  Google Scholar 

  10. Mucciarelli, A., Dalessandro, E., Ferraro, F. R., Origlia, L. & Lanzoni, B. No evidence of chemical anomalies in the bimodal turnoff cluster NGC 1806 in the Large Magellanic Cloud. Astrophys. J. Lett. 793, L6 (2014).

  11. Bastian, N. & de Mink, S. E. The effect of stellar rotation on colour–magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon. Not. R. Astron. Soc. 398, L11–L15 (2009).

    Article  ADS  Google Scholar 

  12. Dupree, A. K. et al. NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. Astrophys. J. Lett. 846, L1 (2017).

  13. Marino, A. F. et al. Different stellar rotations in the two main sequences of the young globular cluster NGC 1818: the first direct spectroscopic evidence. Astron. J. 156, 116 (2018).

    Article  ADS  Google Scholar 

  14. Bastian, N. et al. Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. Mon. Not. R. Astron. Soc. 480, 3739–3746 (2018).

    Article  ADS  Google Scholar 

  15. Sun, W., Li, C., Deng, L. & de Grijs, R. Tidal-locking-induced stellar rotation dichotomy in the open cluster NGC 2287? Astrophys. J. 883, 182 (2019).

    Article  ADS  Google Scholar 

  16. Kamann, S. et al. How stellar rotation shapes the colour–magnitude diagram of the massive intermediate-age star cluster NGC 1846. Mon. Not. R. Astron. Soc. 492, 2177–2192 (2020).

    Article  ADS  Google Scholar 

  17. D’Antona, F. et al. Stars caught in the braking stage in young Magellanic Cloud clusters. Nat. Astron. 1, 0186 (2017).

    Article  ADS  Google Scholar 

  18. Huang, W., Gies, D. R. & McSwain, M. V. A stellar rotation census of B stars: from ZAMS to TAMS. Astrophys. J. 722, 605–619 (2010).

    Article  ADS  Google Scholar 

  19. Zorec, J. & Royer, F. Rotational velocities of A-type stars. IV. Evolution of rotational velocities. Astron. Astrophys. 537, A120 (2012).

    Article  ADS  Google Scholar 

  20. Dufton, P. L. et al. The VLT-FLAMES Tarantula Survey. X. Evidence for a bimodal distribution of rotational velocities for the single early B-type stars. Astron. Astrophys. 550, A109 (2013).

    Article  Google Scholar 

  21. Goudfrooij, P., Puzia, T. H., Chandar, R. & Kozhurina-Platais, V. Population parameters of intermediate-age star clusters in the Large Magellanic Cloud. III. Dynamical evidence for a range of ages being responsible for extended main-sequence turnoffs. Astrophys. J. 737, 4 (2011).

    Article  ADS  Google Scholar 

  22. Correnti, M., Goudfrooij, P., Bellini, A., Kalirai, J. S. & Puzia, T. H. Dissecting the extended main-sequence turn-off of the young star cluster NGC 1850. Mon. Not. R. Astron. Soc. 467, 3628–3641 (2017).

    ADS  Google Scholar 

  23. Niederhofer, F., Hilker, M., Bastian, N. & Silva-Villa, E. No evidence for significant age spreads in young massive LMC clusters. Astron. Astrophys. 575, A62 (2015).

    Article  ADS  Google Scholar 

  24. Niederhofer, F., Georgy, C., Bastian, N. & Ekström, S. Apparent age spreads in clusters and the role of stellar rotation. Mon. Not. R. Astron. Soc. 453, 2070–2074 (2015).

    Article  ADS  Google Scholar 

  25. Cordoni, G. et al. Extended main-sequence turnoff as a common feature of Milky Way open clusters. Astrophys. J. 869, 139 (2018).

    Article  ADS  Google Scholar 

  26. Yang, W. The effects of binary stars on the color–magnitude diagrams of young-age massive star clusters. Astrophys. J. 860, 132 (2018).

    Article  ADS  Google Scholar 

  27. Bastian, N. et al. On the origin of the bimodal rotational velocity distribution in stellar clusters: rotation on the pre-main sequence. Mon. Not. R. Astron. Soc. 495, 1978–1983 (2020).

    Article  ADS  Google Scholar 

  28. Schneider, F. R. N., Izzard, R. G., Langer, N. & de Mink, S. E. Evolution of mass functions of coeval stars through wind mass loss and binary interactions. Astrophys. J. 805, 20 (2015).

    Article  ADS  Google Scholar 

  29. Wang, C. et al. Effects of close binary evolution on the main-sequence morphology of young star clusters. Astrophys. J. Lett 888, L12 (2020).

    Article  ADS  Google Scholar 

  30. Tokovinin, A. & Moe, M. Formation of close binaries by disc fragmentation and migration, and its statistical modelling. Mon. Not. R. Astron. Soc. 491, 5158–5171 (2020).

    Article  ADS  Google Scholar 

  31. Schneider, F. R. N. et al. Stellar mergers as the origin of magnetic massive stars. Nature 574, 211–214 (2019).

    Article  ADS  Google Scholar 

  32. Donati, J. F. & Landstreet, J. D. Magnetic fields of nondegenerate stars. Annu. Rev. Astron. Astrophys. 47, 333–370 (2009).

    Article  ADS  Google Scholar 

  33. Lin, M.-K., Krumholz, M. R. & Kratter, K. M. Spin-down of protostars through gravitational torques. Mon. Not. R. Astron. Soc. 416, 580–590 (2011).

    ADS  Google Scholar 

  34. Ramírez-Agudelo, O. H. et al. The VLT-FLAMES Tarantula Survey. XXI. Stellar spin rates of O-type spectroscopic binaries. Astron. Astrophys. 580, A92 (2015).

    Article  Google Scholar 

  35. Ekström, S., Meynet, G., Maeder, A. & Barblan, F. Evolution towards the critical limit and the origin of Be stars. Astron. Astrophys. 478, 467–485 (2008).

    Article  ADS  Google Scholar 

  36. Hastings, B., Wang, C. & Langer, N. The single star path to Be stars. Astron. Astrophys. 633, A165 (2020).

    Article  ADS  Google Scholar 

  37. Korntreff, C., Kaczmarek, T. & Pfalzner, S. Towards the field binary population: influence of orbital decay on close binaries. Astron. Astrophys. 543, A126 (2012).

    Article  ADS  Google Scholar 

  38. Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    Article  ADS  Google Scholar 

  39. Sana, H. et al. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth? Astron. Astrophys. 599, L9 (2017).

    Article  ADS  Google Scholar 

  40. Schneider, F. R. N., Podsiadlowski, P., Langer, N., Castro, N. & Fossati, L. Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars. Mon. Not. R. Astron. Soc. 457, 2355–2365 (2016).

    Article  ADS  Google Scholar 

  41. Ramírez-Tannus, M. C. et al. A relation between the radial velocity dispersion of young clusters and their age. Evidence for hardening as the formation scenario of massive close binaries. Astron. Astrophys. 645, L10 (2021).

    Article  ADS  Google Scholar 

  42. Baumgardt, H. & Klessen, R. S. The role of stellar collisions for the formation of massive stars. Mon. Not. R. Astron. Soc. 413, 1810–1818 (2011).

    Article  ADS  Google Scholar 

  43. Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  44. Eggleton, P. P. & Kiseleva-Eggleton, L. Orbital evolution in binary and triple stars, with an application to SS Lacertae. Astrophys. J. 562, 1012–1030 (2001).

    Article  ADS  Google Scholar 

  45. Wu, D.-H., Wang, S., Zhou, J.-L., Steffen, J. H. & Laughlin, G. TTV-determined masses for warm Jupiters and their close planetary companions. Astron. J. 156, 96 (2018).

    Article  ADS  Google Scholar 

  46. Ferrario, L., Pringle, J. E., Tout, C. A. & Wickramasinghe, D. T. The origin of magnetism on the upper main sequence. Mon. Not. R. Astron. Soc. 400, L71–L74 (2009).

    Article  ADS  Google Scholar 

  47. Petit, V. et al. A magnetic confinement versus rotation classification of massive-star magnetospheres. Mon. Not. R. Astron. Soc. 429, 398–422 (2013).

    Article  ADS  Google Scholar 

  48. Braithwaite, J. & Spruit, H. C. A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431, 819–821 (2004).

    Article  ADS  Google Scholar 

  49. Fossati, L. et al. Evidence of magnetic field decay in massive main-sequence stars. Astron. Astrophys. 592, A84 (2016).

    Article  Google Scholar 

  50. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 192, 3 (2011).

    Article  ADS  Google Scholar 

  51. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. 208, 4 (2013).

    Article  ADS  Google Scholar 

  52. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. 220, 15 (2015).

    Article  ADS  Google Scholar 

  53. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. 243, 10 (2019).

    Article  ADS  Google Scholar 

  54. Brott, I. et al. Rotating massive main-sequence stars. I. Grids of evolutionary models and isochrones. Astron. Astrophys. 530, A115 (2011).

    Article  Google Scholar 

  55. Claret, A. & Torres, G. The dependence of convective core overshooting on stellar mass. Astron. Astrophys. 592, A15 (2016).

    Article  ADS  Google Scholar 

  56. Castro, N. et al. The spectroscopic Hertzsprung–Russell diagram of galactic massive stars. Astron. Astrophys. 570, L13 (2014).

    Article  ADS  Google Scholar 

  57. Schootemeijer, A., Langer, N., Grin, N. J. & Wang, C. Constraining mixing in massive stars in the Small Magellanic Cloud. Astron. Astrophys. 625, A132 (2019).

    Article  ADS  Google Scholar 

  58. Martinet, S. et al. Convective core sizes in rotating massive stars. I. Constraints from solar metallicity OB field stars. Astron. Astrophys. 648, A126 (2021).

    Article  Google Scholar 

  59. Yang, W. & Tian, Z. The effects of the overshooting of the convective core on main-sequence turnoffs of young- and intermediate-age star clusters. Astrophys. J. 836, 102 (2017).

    Article  ADS  Google Scholar 

  60. Heger, A., Langer, N. & Woosley, S. E. Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys. J. 528, 368–396 (2000).

    Article  ADS  Google Scholar 

  61. Goldreich, P. & Schubert, G. Differential rotation in stars. Astrophys. J. 150, 571–587 (1967).

    Article  ADS  Google Scholar 

  62. Fricke, K. Instabilität stationärer rotation in sternen. Z. Astrophys. 68, 317–344 (1968).

    ADS  Google Scholar 

  63. Eddington, A. S. Circulating currents in rotating stars. Observatory 48, 73–75 (1925).

    ADS  Google Scholar 

  64. Chaboyer, B. & Zahn, J.-P. Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173–177 (1992).

    ADS  MATH  Google Scholar 

  65. Spruit, H. C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002).

    Article  ADS  Google Scholar 

  66. Heger, A., Woosley, S. E. & Spruit, H. C. Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophys. J. 626, 350–363 (2005).

    Article  ADS  Google Scholar 

  67. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    Article  ADS  Google Scholar 

  68. Hamann, W.-R., Koesterke, L. & Wessolowski, U. Spectral analyses of the Galactic Wolf–Rayet stars: hydrogen–helium abundances and improved stellar parameters for the WN class. Astron. Astrophys. 299, 151–162 (1995).

    ADS  Google Scholar 

  69. Prša, A. et al. Nominal values for selected solar and planetary quantities: IAU 2015 Resolution B3. Astron. J. 152, 41 (2016).

    Article  ADS  Google Scholar 

  70. Kurucz, R. L. SYNTHE Spectrum Synthesis Programs and Line Data (Smithsonian Astrophysical Observatory, 1993).

  71. Kurucz, R. L. ATLAS: a Computer Program for Calculating Model Stellar Atmospheres Special Report 309 (SAO, 1970).

  72. Wellstein, S. & Langer, N. Implications of massive close binaries for black hole formation and supernovae. Astron. Astrophys. 350, 148–162 (1999).

    ADS  Google Scholar 

  73. Langer, N. Coupled mass and angular momentum loss of massive main sequence stars. Astron. Astrophys. 329, 551–558 (1998).

    ADS  Google Scholar 

  74. Glebbeek, E., Gaburov, E., Portegies Zwart, S. & Pols, O. R. Structure and evolution of high-mass stellar mergers. Mon. Not. R. Astron. Soc. 434, 3497–3510 (2013).

    Article  ADS  Google Scholar 

  75. Schneider, F. R. N. et al. Long-term evolution of a magnetic massive merger product. Mon. Not. R. Astron. Soc. 495, 2796–2812 (2020).

    Article  ADS  Google Scholar 

  76. Sills, A., Adams, T. & Davies, M. B. Blue stragglers as stellar collision products: the angular momentum question. Mon. Not. R. Astron. Soc. 358, 716–725 (2005).

    Article  ADS  Google Scholar 

  77. Rain, M. J. et al. The blue straggler population of the open clusters Trumpler 5, Trumpler 20, and NGC 2477. Astron. J. 161, 37 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 772225: MULTIPLES). C.W. acknowledges funding from a CSC scholarship. This work has received funding from the ERC under the European Union’s Horizon 2020 research innovation programme (grant agreement ERC-StG 2016, 716082 ‘GALFOR’, principal investigator A.M., http://progetti.dfa.unipd.it/GALFOR). A.M. acknowledges support from MIUR through the FARE project R164RM93XW SEMPLICE (principal investigator A.M.) and the PRIN programme 2017Z2HSMF (principal investigator Bedin). H.S. and J.B. acknowledge support from the FWO Odysseus programme under project G0F8H6N. N.C. gratefully acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG)—CA 2551/1-1. D.J.L. acknowledges support from the Spanish Government Ministerio de Ciencia, Innovación y Universidades through grants PGC-2018-091 3741-B-C22 and from the Canarian Agency for Research, Innovation and Information Society (ACIISI) of the Canary Islands Government, and the European Regional Development Fund (ERDF), under grant ProID2017010115. P.M. acknowledges support from FWO junior postdoctoral fellowship 12ZY520N. S.E.d.M. acknowledges funding by the Netherlands Organization for Scientific Research (NWO) as part of the Vidi research programme BinWaves with project number 639.042.728.

Author information

Authors and Affiliations

Authors

Contributions

C.W., A.S., B.H. and X.-T.X. performed the stellar evolution calculations, based on earlier work by P.M. and on his advice. N.L. carried out the analysis and interpretation of the results, together with C.W., A.S., B.H. and S.E.d.M. A.M., J.B., H.S., N.C., D.J.L. and A.d.K. provided an interpretation of the related observations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–E, Tables 1 and 2 and Figs. 1–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Langer, N., Schootemeijer, A. et al. Stellar mergers as the origin of the blue main-sequence band in young star clusters. Nat Astron 6, 480–487 (2022). https://doi.org/10.1038/s41550-021-01597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01597-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing