Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

Abstract

The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations2,3 of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic4 or compositionally heterogeneous on large scales5. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800 K at 1,000 km, 1,500 K at 2,000 km, and possibly over 2,000 K at the core–mantle boundary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ‘Snapshot’ of the crystal structure of MgSiO3 perovskite from ab initio molecular dynamics simulations at 88 GPa and 3,500 K.
Figure 2: Fluctuations of the stress tensor components for the structure shown in Fig. 1.

Similar content being viewed by others

References

  1. Anderson, D. L. Theory of the Earth (Blackwell Scientific Publications, Boston, 1989).

    Google Scholar 

  2. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Kresse, G. & Furthmuller, J. Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  4. Karato, S.-i. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    Article  ADS  Google Scholar 

  5. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale (eds Karato, S.-i. et al.) 63–87 (AGU Geophys. Monogr. 113, American Geophysical Union, Washington DC, 2000).

    Book  Google Scholar 

  6. Ancilotto, F., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275, 1288–1290 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Alfé, D., Gillan, M. J. & Price, G. D. The melting curve of iron at the pressures of the Earth's core from ab initio calculations. Nature 401, 462–464 (1999).

    Article  ADS  Google Scholar 

  9. Sugino, O. & Car, R. Ab initio molecular dynamics study of first-order phase transitions: melting of silicon. Phys. Rev. Lett. 74, 1823–1826 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Buda, F., Car, R. & Parrinello, M. Thermal expansion of c-Si via ab initio molecular dynamics. Phys. Rev. B 41, 1680–1683 (1990).

    Article  ADS  CAS  Google Scholar 

  11. da Silva, C., Wentzcovitch, R. M., Patel, A., Price, G. D. & Karato, S.-i. The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite. Phys. Earth Planet. Inter. 118, 103–109 (2000).

    Article  ADS  CAS  Google Scholar 

  12. O'Keeffe, M. & Bovin, J. O. Solid electrolyte behavior of NaMgF3: geophysical implications. Science 206, 599–600 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Matsui, M. & Price, G. D. Simulation of the pre-melting behaviour of MgSiO3 perovskite at high pressures and temperatures. Nature 351, 735–737 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Oganov, A. R., Brodholt, J. P. & Price, G. D. Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet. Sci. Lett. 184, 555–560 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Robertson, G. S. & Woodhouse, J. H. Constraints on lower mantle properties from seismology and mineral physics. Earth Planet. Sci. Lett. 143, 197–205 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower-mantle pressure. J. Geophys. Res. 100, 17699–17713 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S. & Baroni, S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 286, 1705–1707 (1999).

    Article  CAS  Google Scholar 

  18. Kennett, B. L. N., Widiyantoro, S. & van der Hilst, R. D. Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle. J. Geophys. Res. 103, 12469–12493 (1998).

    Article  ADS  Google Scholar 

  19. Yuen, D. A., Čadek, O., Chopelas, A. & Matyska, C. Geophysical inferences of thermal-chemical structures in the lower mantle. Geophys. Res. Lett. 20, 899–902 (1993).

    Article  ADS  Google Scholar 

  20. Castle, J. C., Creager, K. C., Winchester, J. P. & van der Hilst, R. D. Shear wave speeds at the base of the mantle. J. Geophys. Res. 105, 21543–21557 (2000).

    Article  ADS  Google Scholar 

  21. Knittle, E. & Jeanloz, R. Earth's core-mantle boundary: results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. Mineralogy and dynamics of a pyrolite mantle. Nature 393, 252–255 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  24. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, Y. & Perdew, J. P. Correlation hole of the spin-polarized electron gas, with exact small-vector and high-density scaling. Phys. Rev. B 44, 13298–13307 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  ADS  Google Scholar 

  27. Wallace, D. C. Thermodynamics of Crystals (Dover Publications, New York, 1998).

    Google Scholar 

Download references

Acknowledgements

We acknowledge receipt of a Russian President Scholarship for Education Abroad, a UCL Graduate School Research Scholarship, and a UK Overseas Research Scholarship (A.R.O.) and a Royal Society University Research Fellowship (J.P.B.). We thank NERC for access to the supercomputer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem R. Oganov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oganov, A., Brodholt, J. & Price, G. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature 411, 934–937 (2001). https://doi.org/10.1038/35082048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing