Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of the quantum states of squeezed light

Abstract

A state of a quantum-mechanical system is completely described by a density matrix or a phase-space distribution such as the Wigner function. The complete family of squeezed states of light (states that have less uncertainty in one observable than does the vacuum state) have been generated using an optical parametric amplifier, and their density matrices and Wigner functions have been reconstructed from measurements of the quantum statistics of their electric fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Royer, A. Measurement of quantum states and the Wigner function. Foundat. Phys. 19, 3–32 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  2. Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989).

    Article  ADS  CAS  Google Scholar 

  3. D'Ariano, G. M., Macchiavello, C. & Paris, M. G. A. Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50, 4298–4302 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Leonhardt, U., Munroe, M., Kiss, T., Richter, Th. & Raymer, M. G. Sampling of photon statistics and density matrix using homodyne detection. Opt. Commun. 127, 144–160 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Leonhardt, U. & Raymer, M. G. Observation of moving wave packets reveals their quantum state. Phys. Rev. Lett. 76, 1985–1989 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Richter, T. & Wünsche, A. Determination of occupation probabilities from time-averaged position distributions. Phys. Rev. A 53, R1974–R1977 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Zucchetti, A., Vogel, W., Tasche, M. & Welsch, D.-G. Direct sampling of density matrices in field-strength bases. Phys. Rev. A 54, 1–4 (1966).

    Google Scholar 

  8. Banaszek, K. & Wodkiewicz, K. Direct probing of quantum phase space by photon counting. Phys. Rev. Lett. 76, 4344–4347 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Tan, S. M. An inverse problem approach to optical homodyne tomography, (spec. iss. on QSR) J. Mod. Opt. (submitted).

  10. Smithey, D. T., Beck, M., Raymer, M. G. & Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Smithey, D. T., Beck, M., Cooper, J. & Raymer, M. G. Measurement of number-phase uncertainty relations of optical fields. Phys. Rev. A 48, 3159–3167 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Munroe, M., Boggavarapu, D., Anderson, M. E. & Raymer, M. G. Photon number statistics from the phase-averaged quadrature field distribution: theory and ultrafast measurement. Phys. Rev. A 52, R924–R927 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Breitenbach, G. et al. Squeezed vacuum from a monolithic optical parametric oscillator. J. Opt. Soc. Am. B 12, 2304–2309 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Schiller, S., Breitenbach, G., Pereira, S. F., Müller, T. & Mlynek, J. Quantum statistics of the squeezed vacuum by measurement of the density matrix in the number state representation. Phys. Rev. Lett. 77, 2933–2936 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Dunn, T. J., Sweetser, J. N. & Walmsley, I. A. Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography. Phys. Rev. Lett. 74, 884–887 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Leibfried, D. et al. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4821–4285 (1996).

    Article  Google Scholar 

  17. Kurtsiefer, C., Pfau, T. & Mlynek, J. Measurement of the Wigner function of an ensemble of helium atoms. Nature 386, 150–153 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Hillery, M., O'Connell, R. F., Scully, M. O. & Wigner, E. P. Distribution functions in physics: fundamentals. Phys. Rep. 106, 122–167 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  19. Walls, D. Squeezed states of light. Nature 306, 141–146 (1983).

    Article  ADS  Google Scholar 

  20. Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Kimble, H. J. & Walls, D. F. (eds) (spec. iss. on squeezing light) J. Opt. Soc. Am. B 4(10), (1987).

  22. Yuen, H. P. & Chan, V. W. S. Noise in homodyne and heterodyne detection. Opt. Lett. 18, 177–179 (1983).

    Article  ADS  Google Scholar 

  23. Schrödinger, E. Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926).

    Article  ADS  Google Scholar 

  24. Breitenbach, G., Schiller, S. & Mlynek, J. 81% conversion efficiency in frequency-stable continuous-wave parametric oscillation. J. Opt. Soc. Am. B 12, 2095–2101 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Polzik, E. S., Carri, J. & Kimble, H. J. Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020–3023 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Kim, C. & Kumar, P. Quadrature-squeezed light detection using a self-generated matched local oscillator. Phys. Rev. Lett. 73, 1605–1608 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Schneider, K., Bruckmeier, R., Hansen, H., Schiller, S. & Mlynek, J. Bright squeezed light generation by a continuous-wave semi-monolithic parametric amplifier. Opt. Lett. 21, 1396–1397 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Collett, M. J. & Walls, D. F. Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887–2892 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  31. D'Ariano, G. M., Leonhardt, U. & Paul, H. Homodyne detection of the density matrix of the radiation field. Phys. Rev. A 52, R1801–R1804 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Leonhardt, U. & Paul, H. Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 48, 4598–4604 (1993).

    Article  ADS  CAS  Google Scholar 

  33. Janicke, U. & Wilkens, M. Tomography of atom beams. J. Mod. Opt. 42, 2183–2199 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Dodonev, V. V., Man'ko, O. V. & Man'ko, V. I. Photon distribution for one-mode mixed light with a generic gaussian Wigner function. Phys. Rev. A 49, 2993–3001 (1994).

    Article  ADS  Google Scholar 

  35. Davidovich, L. Sub-Poissonian processes in quantum optics. Rev. Mod. Phys. 68, 127–172 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Breitenbach, G. & Schiller, S. Homodyne tomography of classical and non-classical light, (spec. iss. on QSR) J. Mod. Opt. (submitted).

  37. Schleich, W. & Wheeler, J. A. Oscillations in photon number distribution of squeezed states and interference in phase space. Nature 326, 574–577 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997). https://doi.org/10.1038/387471a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387471a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing