Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier

Abstract

Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy and quantum information science. In superconducting circuits, the resonator-based Josephson-junction parametric amplifiers conventionally used to generate squeezed microwaves are constrained by a narrow bandwidth and low dynamic range. Here we develop a dual-pump, broadband Josephson travelling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers. We also demonstrate two-mode squeezing at microwave frequencies with bandwidth in the gigahertz range that is almost two orders of magnitude wider than that of contemporary resonator-based squeezers. Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Josephson travelling-wave parametric amplifier dispersion-engineered for a bichromatic pump.
Fig. 2: Amplification characteristics.
Fig. 3: Single-mode squeezed vacuum.
Fig. 4: Broadband two-mode squeezed vacuum.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request and cognizance of our US Government sponsors who funded the work.

Code availability

The code used for the analyses is available from the corresponding author upon reasonable request and with the permission of the US Government sponsors who funded the work.

References

  1. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  2. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  3. Bienfait, A. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotechnol. 11, 253–257 (2016).

    Article  ADS  Google Scholar 

  4. Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).

    Article  ADS  Google Scholar 

  5. Toyli, D. M. et al. Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016).

    Google Scholar 

  6. Aoki, T. et al. Quantum error correction beyond qubits. Nat. Phys. 5, 541–546 (2009).

    Article  Google Scholar 

  7. The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).

  8. Boutin, S. et al. Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers. Phys. Rev. Appl. 8, 054030 (2017).

    Article  ADS  Google Scholar 

  9. Malnou, M., Palken, D. A., Vale, L. R., Hilton, G. C. & Lehnert, K. W. Optimal operation of a Josephson parametric amplifier for vacuum squeezing. Phys. Rev. Appl. 9, 044023 (2018).

    Article  ADS  Google Scholar 

  10. Murch, K. W., Weber, S. J., Beck, K. M., Ginossar, E. & Siddiqi, I. Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013).

    Article  Google Scholar 

  11. Menzel, E. P. et al. Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012).

    Article  ADS  Google Scholar 

  12. Bienfait, A. et al. Magnetic resonance with squeezed microwaves. Phys. Rev. X 7, 041011 (2017).

    Google Scholar 

  13. Krantz, P. et al. Investigation of nonlinear effects in Josephson parametric oscillators used in circuit quantum electrodynamics. N. J. Phys. 15, 105002 (2013).

    Article  Google Scholar 

  14. Renger, M. et al. Beyond the standard quantum limit for parametric amplification of broadband signals. npj Quantum Inf. 7, 160 (2021).

    Article  ADS  Google Scholar 

  15. Roy, T. et al. Broadband parametric amplification with impedance engineering: beyond the gain-bandwidth product. Appl. Phys. Lett. 107, 262601 (2015).

    Article  ADS  Google Scholar 

  16. Mutus, J. Y. et al. Strong environmental coupling in a Josephson parametric amplifier. Appl. Phys. Lett. 104, 263513 (2014).

    Article  ADS  Google Scholar 

  17. Sivak, V. V. et al. Kerr-free three-wave mixing in superconducting quantum circuits. Phys. Rev. Appl. 11, 054060 (2019).

    Article  ADS  Google Scholar 

  18. Frattini, N. E., Sivak, V. V., Lingenfelter, A., Shankar, S. & Devoret, M. H. Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic range. Phys. Rev. Appl. 10, 054020 (2018).

    Article  ADS  Google Scholar 

  19. Sivak, V. V., Shankar, S., Liu, G., Aumentado, J. & Devoret, M. H. Josephson array-mode parametric amplifier. Phys. Rev. Appl. 13, 024014 (2020).

    Article  ADS  Google Scholar 

  20. Esposito, M. et al. Observation of two-mode squeezing in a traveling wave parametric amplifier. Phys. Rev. Lett. 128, 153603 (2022).

    Article  ADS  Google Scholar 

  21. Perelshtein, M. et al. Broadband continuous variable entanglement generation using Kerr-free Josephson metamaterial. Phys. Rev. Applied 18, 024063 (2022).

    Article  ADS  Google Scholar 

  22. Parker, D. J. et al. Degenerate parametric amplification via three-wave mixing using kinetic inductance. Phys. Rev. Applied 17, 034064 (2022).

    Article  ADS  Google Scholar 

  23. Malnou, M. et al. Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance. PRX Quantum 2, 010302 (2021).

    Article  Google Scholar 

  24. Bockstiegel, C. et al. Development of a broadband NbTiN traveling wave parametric amplifier for MKID readout. J. Low Temp. Phys. 176, 476–482 (2014).

    Article  ADS  Google Scholar 

  25. Macklin, C. et al. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  ADS  Google Scholar 

  26. O’Brien, K., Macklin, C., Siddiqi, I. & Zhang, X. Resonant phase matching of Josephson junction traveling wave parametric amplifiers. Phys. Rev. Lett. 113, 157001 (2014).

    Article  ADS  Google Scholar 

  27. Tholén, E. A., Ergül, A., Stannigel, K., Hutter, C. & Haviland, D. B. Parametric amplification with weak-link nonlinearity in superconducting microresonators. Phys. Scr. T137, 014019 (2009).

    Article  ADS  Google Scholar 

  28. Castellanos-Beltran, M. A., Irwin, K., Hilton, G., Vale, L. & Lehnert, K. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).

    Article  Google Scholar 

  29. Zhong, L. et al. Squeezing with a flux-driven Josephson parametric amplifier. N. J. Phys. 15, 125013 (2013).

    Article  MathSciNet  Google Scholar 

  30. Zorin, A. B. Josephson traveling-wave parametric amplifier with three-wave mixing. Phys. Rev. Applied 6, 034006 (2016).

    Article  ADS  Google Scholar 

  31. Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S. & Wallraff, A. Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502 (2014).

    Article  ADS  Google Scholar 

  32. Kannan, B. et al. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. Sci. Adv. 6, eabb8780 (2020).

    Article  ADS  Google Scholar 

  33. Spietz, L., Lehnert, K. W., Siddiqi, I. & Schoelkopf, R. J. Primary electronic thermometry using the shot noise of a tunnel junction. Science 300, 1929–1932 (2003).

    Article  ADS  Google Scholar 

  34. Mallet, F. et al. Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. 106, 220502 (2011).

    Article  ADS  Google Scholar 

  35. Movshovich, R. et al. Observation of zero-point noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett. 65, 1419–1422 (1990).

    Article  ADS  Google Scholar 

  36. Clark, J. B., Lecocq, F., Simmonds, R., Aumentado, J. & Teufel, J. Sideband cooling beyond the quantum backaction limit with squeezed light. Nature 541, 191–195 (2017).

    Article  ADS  Google Scholar 

  37. Sage, J. M., Bolkhovsky, V., Oliver, W. D., Turek, B. & Welander, P. B. Study of loss in superconducting coplanar waveguide resonators. J. Appl. Phys. 109, 063915 (2011).

    Article  ADS  Google Scholar 

  38. Houde, M., Govia, L. C. G. & Clerk, A. A. Loss asymmetries in quantum traveling-wave parametric amplifiers. Phys. Rev. Appl. 12, 034054 (2019).

    Article  ADS  Google Scholar 

  39. Peng, K. et al. Floquet-mode traveling-wave parametric amplifiers. PRX Quantum 3, 020306 (2022).

    Article  ADS  Google Scholar 

  40. Grimsmo, A. L. & Blais, A. Squeezing and quantum state engineering with Josephson travelling wave amplifiers. npj Quantum Inf. 3, 20 (2017).

    Article  ADS  Google Scholar 

  41. Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011).

    Article  ADS  Google Scholar 

  42. Flurin, E., Roch, N., Mallet, F., Devoret, M. H. & Huard, B. Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012).

    Article  ADS  Google Scholar 

  43. Schneider, B. H. et al. Observation of broadband entanglement in microwave radiation from a single time-varying boundary condition. Phys. Rev. Lett. 124, 140503 (2020).

    Article  ADS  Google Scholar 

  44. Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    Article  ADS  Google Scholar 

  45. Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    Article  ADS  Google Scholar 

  46. Barzanjeh, S., DiVincenzo, D. P. & Terhal, B. M. Dispersive qubit measurement by interferometry with parametric amplifiers. Phys. Rev. B 90, 134515 (2014).

    Article  ADS  Google Scholar 

  47. Didier, N., Kamal, A., Oliver, W. D., Blais, A. & Clerk, A. A. Heisenberg-limited qubit read-out with two-mode squeezed light. Phys. Rev. Lett. 115, 093604 (2015).

    Article  ADS  Google Scholar 

  48. Barzanjeh, S., Pirandola, S., Vitali, D. & Fink, J. M. Microwave quantum illumination using a digital receiver. Sci. Adv. 6, eabb0451 (2020).

    Article  ADS  Google Scholar 

  49. Las Heras, U. et al. Quantum illumination reveals phase-shift inducing cloaking. Sci. Rep. 7, 9333 (2017).

    Article  ADS  Google Scholar 

  50. Fedorov, K. G. et al. Experimental quantum teleportation of propagating microwaves. Sci. Adv. 7, eabk0891 (2021).

    Article  ADS  Google Scholar 

  51. Fedorov, K. G. et al. Displacement of propagating squeezed microwave states. Phys. Rev. Lett. 117, 020502 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Vignesh for valuable discussions and J. Aumentado at NIST for providing the shot-noise tunnel junction. This research was funded in part by the NTT PHI Laboratory and in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force contract no. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA or the US Government. A.L.G. acknowledges support from the Australian Research Council, through the Centre of Excellence for Engineered Quantum Systems (EQUS) project no. CE170100009 and Discovery Early Career Research Award project no. DE190100380.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.Q., K.P.O., I.S. and W.D.O. conceived the experiment. J.Y.Q., K.P.O., S.G. and W.D.O. designed the experimental procedure. J.Y.Q. designed the devices and conducted the measurements with assistance from B.K., B.L., Y.S. and P.K. J.Y.Q. analysed the data with assistance from A.G., K.P.O. and W.D.O. A.G. and K.P. provided theory support. J.Y.Q., T.P.O., K.P.O. and W.D.O. wrote the manuscript. V.B., G.C., D.K., A.M. and B.M.N. performed sample fabrication. J.Y., M.E.S., T.P.O., I.S., S.G., K.P.O. and W.D.O. supervised various aspects of the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jack Y. Qiu or William D. Oliver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Baleegh Abdo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and discussion, Tables 1–3 and Figs. 1–21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J.Y., Grimsmo, A., Peng, K. et al. Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier. Nat. Phys. 19, 706–713 (2023). https://doi.org/10.1038/s41567-022-01929-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01929-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing