Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of nitrogen fertilization on methane uptake in temperate forest soils

Abstract

METHANE, a long-lived gas (8–10 years residence time), is important in the chemistry of the atmosphere and the Earth's radiation balance1–3. The tropospheric abundance of CH4 has been increasing by ˜1.1% yr–1 over the past decade4,5. The cause of this increase may be due to either increases in global sources or decreases in global sinks1,6,7. Although considerable research has focused on measuring CH4 emissions from major biological sources7,8, much less is known about the magnitude of, and factors controlling, biological sinks of CH4. The largest biological sinks for methane are microorganisms in aerobic soils7. Here we report a study of CH4 uptake by aerobic temperate-forest soils. We measured CH4consumption rates (up to 3.17 mg CH4–C m–1 day–1) that were higher than reported previously. Globally, soils of temperate and boreal forests may consume up to 9.3 Tg CH4–C yr–1. We also found that the CH4 uptake rates of these soils were decreased significantly by elevated soil moisture (14%) and nitrogen additions (33%), implying that nitrogen fertilization may reduce this CH4 sink.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seller, W. in Current Perspectives in Microbial Ecology (eds Klug, M. J. & Reddy, C. A.) 468–477 (American Society for Microbiology, Washington, 1984).

    Google Scholar 

  2. Mooney, H. A., Vitousek, P. M. & Matson, P. A. Science 238, 926–932 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Blake, D. R. & Rowland, F. S. Science 239, 1129–1131 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Bolle, H.-J., Seiler, W. & Bolin, B. in The Greenhouse Effect, Climatic Change and Ecosystems (eds Bolin, B. et al.) 157–203 (Wiley, Chichester, 1986).

    Google Scholar 

  5. Khalil, M. A. K. & Rasmussen, R. A. Atmos. Environ. 21, 2445–2452 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Khalil, M. A. K. & Rasmussen, R. A. J. geophys. Res. 88, 5131–5144 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Seiler, W. & Conrad, R. in The Geophysiology of Amazonia: Vegetation and Climate Interactions (ed. Dickinson, R. E.) 133–162 (Wiley, New York, 1987).

    Google Scholar 

  8. Cicerone, R. J. Nature 334, 198 (1988).

    Article  ADS  Google Scholar 

  9. Barrie, L. A. & Hales, J. M. Tellus 36B, 333–355 (1984).

    Article  Google Scholar 

  10. Fay, J. A., Golomb, D. & Kumar, S. Atmos. Environ. 21, 61–68 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Georgii, H. W., Perseke, C. & Rohbock, E. Atmos. Environ. 18, 581–589 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Nihlgård, B. Ambio 14, 2–7 (1985).

    Google Scholar 

  13. Hinrichsen, D. Ambio 15, 258–265 (1986).

    Google Scholar 

  14. Aber, J. D., Melillo, J. M., McClaugherty, C. A. & Eshelman, K. N. Ecol. Bull. 35, 179–192 (1983).

    CAS  Google Scholar 

  15. Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A. & McElroy, M. B. Geophys. Res. Lett. 10, 1156–1159 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Harriss, R. C., Sebacher, D. L. & Day, F. P. Jr Nature 297, 673–674 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Keller, M., Kaplan, W. A. & Wofsy, S. C. J. geophys. Res. 91, 11,791–11,802.

  18. Goreau, R. J. & de Mello, W. Z. Ambio 17, 274–281 (1988).

    Google Scholar 

  19. Houghton, R. A. et al. Ecol. Monogr. 53, 235–262 (1983).

    Article  CAS  Google Scholar 

  20. Ferenci, T., Strom, T. & Quayle, J. R. J. gen. Microbiol. 91, 79–91 (1975).

    Article  CAS  Google Scholar 

  21. Hanson, R. S. Adv. appl. Microbiol. 26, 3–39 (1980).

    Article  CAS  Google Scholar 

  22. Ward, B. B. Arch. Microbiol. 147, 126–133 (1987).

    Article  CAS  Google Scholar 

  23. Lineweaver, H. & Burk, D. J. Am. chem. Soc. 56, 658–666 (1934).

    Article  CAS  Google Scholar 

  24. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. J. gen. Microbiol. 61, 205–218 (1970).

    Article  CAS  Google Scholar 

  25. Wilkinson, J. F. in Microbial Growth on Cl-Compounds (ed. The Organizing Committee) 45–57 (Society of Fermentation Technology, Osaka, Japan, 1975).

    Google Scholar 

  26. Jones, R. D. & Morita, R. Y. Appl. environ. Microbiol. 45, 401–410 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hyman, M. & Wood, P. M. Biochem. J. 212, 31–37 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steudler, P., Bowden, R., Melillo, J. et al. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341, 314–316 (1989). https://doi.org/10.1038/341314a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341314a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing