Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The inositol tris/tetrakisphosphate pathway—demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues

Abstract

Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptorstimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)1,2 results in the formation of two second messengers, diacylglycerol3 and inositol 1,4,5-trisphosphate (Ins(l,4,5)P3)4. The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(l,3,4)P3, is formed in stimulated tissues5; the metabolic kinetics of Ins(l,3,4)P3 are entirely different from those of Ins(l,4,5)P3 (refs 6, 7). The probable route of formation of Ins(l,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(l,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(l,3,4)P3 by a 5-phosphatase in red blood cell membranes8. However, the source of Ins(l,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful8. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells9 suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(l,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation10,11 of Ins(l,4,5)P3. The function of this novel pathway is unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. Biochem. J. 220, 345–360 (1984).

    Article  CAS  Google Scholar 

  2. Downes, C. P. & Michell, R. H. in Molecular Mechanisms of Transmembrane Signalling (eds Cohen, P. & Houslay, M. D.) 3–56 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  3. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Irvine, R.F., Letcher, A.J., Lander, D.J. & Downes, C.P. Biochem. J. 223, 237–243 (1984).

    Article  CAS  Google Scholar 

  6. Irvine, R.F., Änggård, E.E., Letcher, A.J. & Downes, C.P. Biochem. J. 229, 505–511 (1985).

    Article  CAS  Google Scholar 

  7. Burgess, G.M., McKinney, J.S., Irvine, R.F. & Putney, J.W. Biochem. J. 232, 237–243 (1985).

    Article  CAS  Google Scholar 

  8. Batty, I. R., Nahorski, S. R. & Irvine, R. F. Biochem. J. 232, 211–215 (1985).

    Article  CAS  Google Scholar 

  9. Heslop, J.P., Irvine, R.F., Tashjian, A.H. & Berridge, M.J. J. exp. Biol. 119, 395–402 (1985).

    CAS  PubMed  Google Scholar 

  10. Downes, C. P., Mussatt, M. C. & Michell, R. H. Biochem. J. 203, 169–177 (1982).

    Article  CAS  Google Scholar 

  11. Storey, D. J., Shears, S. B., Kirk, C. J. & Michell, R. H. Nature 312, 374–376 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Connolly, T. M., Bross, T. E. & Majerus, P. W. J. biol. Chem. 260, 7868–7874 (1985).

    CAS  PubMed  Google Scholar 

  13. Irvine, R. F. & Dawson, R. M. C. J. Neurochem. 31, 1427–1434 (1978).

    Article  CAS  Google Scholar 

  14. Connolly, T. M., Wilson, D. B., Bross, T. E. & Majerus, P. W. J. biol. Chem. 261, 122–126 (1986).

    CAS  PubMed  Google Scholar 

  15. Rittenhouse, S. E. & Sasson, J. P. J. biol. Chem. 260, 8657–8660 (1985).

    CAS  PubMed  Google Scholar 

  16. Mills, G. B., Cragoe, E. J., Gelfand, E. W. & Grinstein, S. J. biol. Chem. 260, 12500–12507 (1985).

    CAS  PubMed  Google Scholar 

  17. Downes, C. P. & Michell, R. H. Biochem. J. 202, 53–58 (1982).

    Article  CAS  Google Scholar 

  18. Irvine, R. F., Letcher, A. J. & Dawson, R. M. C. Biochem. J. 218, 177–185 (1984).

    Article  CAS  Google Scholar 

  19. Wilson, D. W., Bross, T. E., Sherman, W. R., Berger, R. A. & Majerus, P. W. Proc. natn. Acad. Sci. U.S.A. 82, 4013–4017 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Dawson, R. M. C., Freinkel, N., Jungawala, F. B. & Clarke, N. Biochem. J. 122, 605–607 (1971).

    Article  CAS  Google Scholar 

  21. Wilson, D. B. et al. J. biol. Chem. 260, 13496–13501 (1985).

    CAS  PubMed  Google Scholar 

  22. Irvine, R. F., Hemington, N. & Dawson, R. M. C. Biochem. J. 164, 177–180 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, R., Letcher, A., Heslop, J. et al. The inositol tris/tetrakisphosphate pathway—demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues. Nature 320, 631–634 (1986). https://doi.org/10.1038/320631a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320631a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing