Articles in 2022

Filter By:

Article Type
Year
  • Derivatives of fluorinated alkenes are commonly found in biologically active molecules, but their synthesis remains challenging. Towards this goal, a rhodium-catalysed method for the selective β- or γ-addition of nucleophiles to gem-difluoroallenes has now been developed. Catalysts with N- or P-based ligands result in the β- or γ-selective addition, respectively, of amines and thiols to gem-difluoroallenes.

    • Xiaowei Han
    • Minyan Wang
    • Zhuangzhi Shi
    Article
  • High-entropy materials are used in a range of applications but their synthesis at the nanoscale remains challenging. Now, a robust and general strategy to prepare high-entropy alloy and ceramic nanoparticles has been developed using laser scanning ablation. This approach takes only five nanoseconds per pulse to ablate precursors at atmospheric temperature and pressure.

    • Bing Wang
    • Cheng Wang
    • Zhigang Zou
    Article
  • The solidification of liquid metal alloys drives phase separation and pattern formation. Now, it emerges that the solidification of liquid metal alloys on a surface follows unique solidification patterns that reveal alternating convergent and divergent growth habits, leading to oscillatory bifurcation patterns.

    • Jianbo Tang
    • Stephanie Lambie
    • Kourosh Kalantar-Zadeh
    Article
  • Mild and metal-free direct α-arylation of ketones has long been a challenging transformation. Now, a metal-free photoredox approach has been developed using electron-rich acridinium ions to photoactivate C(sp2)–X bonds under low-energy green light and to catalyse the α-arylation of cyclic ketones. This approach is a multigram and sustainable methodology for the synthesis of pharmaceutical synthons.

    • Md Mubarak Hossain
    • Aslam C. Shaikh
    • Thomas L. Gianetti
    Article
  • Taking inspiration from palladium–norbornene cooperative catalysis, Catellani-type reactions are now performed using a hybrid olefin ligand with a P or S coordination site. This olefin ligand enables efficient ipso,ortho-difunctionalization of iodoarenes. Mechanistic studies show the formation of organopalladium intermediates that comprise both the substrate and the hybrid olefin ligand.

    • Ya-Xin Zheng
    • Lei Jiao
    Article
  • Sulfoximines and sulfonimidoyl groups have recently emerged as powerful pharmacophores, however, their synthesis and incorporation into complex molecules is typically limited by long synthetic routes and the need to control stereogenic S-centres. Now, a stereospecific SNAr approach has been developed for the synthesis of α-(hetero)arylation of sulfonimidoyl motifs.

    • Zachary P. Shultz
    • Thomas Scattolin
    • Justin M. Lopchuk
    Article
  • Iterative sequences of organic reactions can be automated but are rare and challenging to identify. Now, a computer-driven strategy is reported for the systematic discovery and evaluation of such sequences. Several of the iterative sequences are validated experimentally and enable the syntheses of useful motifs in natural product targets.

    • Karol Molga
    • Sara Szymkuć
    • Bartosz A. Grzybowski
    Article
  • A ternary catalytic method combining organic photoredox, hydrogen atom transfer and nickel catalysis is reported. This combination can directly arylate the allylic C(sp3)–H bonds of a broad range of readily available olefins. Mechanistic experiments, coupled with density functional theory calculations aid the elucidation of the ternary catalytic cycle and the origin of regioselectivity.

    • Huan-Ming Huang
    • Peter Bellotti
    • Frank Glorius
    Article
  • A sonochemical route rapidly synthesizes covalent organic frameworks (COFs) in aqueous solutions of acetic acid. This method has operational advantages compared with conventional solvothermal routes and yields COFs of higher crystallinity and porosity, and hence improved materials properties.

    • Wei Zhao
    • Peiyao Yan
    • Andrew I. Cooper
    Article
  • In photoelectrochemical (PEC) cells, water oxidation to O2, when coupled to CO2 reduction, typically requires a pair of light absorbers or an applied bias voltage. Now, a bias-free PEC cell with a single sunlight absorber drives simultaneous CO2 reduction to give formate, and the oxidation of an organic substrate in aqueous conditions.

    • Daniel Antón-García
    • Esther Edwardes Moore
    • Erwin Reisner
    Article